DOI QR코드

DOI QR Code

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design

첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계

  • Heo, SungKu (Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Jeong, Chanhyeok (Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Lee, Nahui (Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Shim, Yerim (Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Woo, TaeYong (Integrated engineering, Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Kim, JeongIn (Integrated engineering, Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University) ;
  • Yoo, ChangKyoo (Department. of Environmental Science and Engineering College of Engineering, Kyung Hee University)
  • 허성구 (경희대학교 공과대학 환경학 및 환경공학과) ;
  • 정찬혁 (경희대학교 공과대학 환경학 및 환경공학과) ;
  • 이나희 (경희대학교 공과대학 환경학 및 환경공학과) ;
  • 심예림 (경희대학교 공과대학 환경학 및 환경공학과) ;
  • 우태용 (경희대학교 공과대학 환경학 및 환경공학과 융합공학전공) ;
  • 김정인 (경희대학교 공과대학 환경학 및 환경공학과 융합공학전공) ;
  • 유창규 (경희대학교 공과대학 환경학 및 환경공학과)
  • Received : 2021.12.01
  • Accepted : 2021.01.12
  • Published : 2022.03.31

Abstract

In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L -1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

본 연구에서는 Part I에서 제안한 첨단 전자산업 폐수처리시설 특화 Water Digital Twin모델인 e-ASM을 이용하여 랩-파일럿 처리장 데이터를 바탕으로 모델 보정(Calibration), 유입 성상에 따른 제거 효율, 유출수 예측 및 최적 공법 선정을 수행하였다. 첨단 전자산업 폐수처리시설의 특화 모델링을 위하여, 민감도 분석을 통해 e-ASM 모델의 정합성과 상관성이 높은 동역학적 파라미터를 선정하였고, 다중반응표면분석법 (Multiple response surface methodology, MRS)을 이용하여 동역학적 파라미터를 보정하였다. e-ASM 모델의 보정 결과, Lab-scale, Pilot-scale 단위의 실험데이터와 90% 이상의 높은 정합성을 보였다. 그리고 4가지 유기폐수 처리처리공법인 MLE, A2/O, 4-stage MLE-MBR, Bardenpho-MBR을 제안한 Water Digital Twin으로 구현하여 유입 폐수의 성상별 운전조건에 따라 제거효율을 분석하였으며, Bardenpho-MBR이 C/N ratio 변화에서도 안정적으로 COD (Chemical oxygen demand)를 90% 이상 제거하며 높은 총 질소 제거 효율을 보였다. 그리고 유입 폐수의 조건별 Bardenpho-MBR공정의 수리학적 체류시간(Hydraulic retention time, HRT)이 3일 이상일 때 1,800 mg L-1의 고농도 TMAH 폐수를 98% 이상 제거할 수 있음을 확인할 수 있었다. 이와 같이, 본 연구에서 개발한 e-ASM은 전자산업 제조시설별, 유입 폐수의 성상별 특화 모델링을 통해 높은 정합성을 가진 전자산업 폐수처리공정의 Water Digital Twin를 구현할 수 있고, 최적운전, Water AI, 최적가용기법 선정 등의 응용 가능성을 바탕으로 지속 가능한 첨단전자 산업을 위해 활용될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2021년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구로 이에 감사를 드립니다 (No. 2021R1A2C2007838).

References

  1. Oh, S. E., Chae, H. B., and Choo, T. H., "Study for Application of Acetic Acid to Substitute Methanol on Semiconductor Wastewater Treatment Process, Using GPS-X," J.of Korean Soc. Environ. Technol., 17(3), 181-190 (2016).
  2. MICHELIS, I. D., RENZO, A. D., SARAULLO, M., and VEGLIO, F., "Kinetic Study of Aerobic Degradation of Tetramethylammonium Hydroxide (Tmah) Waste Produced in Electronic Industries," DEStech Trans. Environ. Energy Earth Sci., 27-32 (2017).
  3. Wu, Y. J., Whang, L. M., Huang, S. J., Yang, Y. F., Lei, C. N., and Cheng, S. S., "Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater," 1085-1094 (2008).
  4. T. Fukushima, L. M. Whang, P. C. Chen, D. W. Putri, M. Y. Chang, Y. J. Wu and Y. C. Lee., "Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicromium and Thiobacillusspp.," No. 141, 131-137 (2013).
  5. H. Cheng, C. Liu, Y. Lei, Y. Chiu, J. Mangalidan, C. Wu, Y. Wu and L. Whang, "Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions," Chemosphere, 236, 124291 (2019). https://doi.org/10.1016/j.chemosphere.2019.07.022
  6. Raghuvanshi, S., and Gupta, S., "Growth Kinetics of Acclimated Mixed Culture for Degradation of Isopropyl Alcohol (IPA)," J. Biotechnol. Biomater., No. 13, 1-7 (2013).
  7. National Institute of Environmental Research, "Guidelines on Best Available Techniques for Environmental Pollution Prevention and Integrated Management in Semiconductor Manufacturing Industry," 177-261 (2020).
  8. Wu, Y. J., Irmayani, L, Setiyawan, A. A., and Whang, L. M., "Aerobic degradation of high tetramethylammonium hydroxide (TMAH) and its impacts on nitrification and microbial community," Chemosphere, 258, 1-7 (2020).
  9. M. R. Hockenbury and C. P. L. Grady, "Inhibition of nitrification: effects of selected organic compounds," J. Water Pollut. Control Fed., 49(5), 768-777 (1977).
  10. Kang, C. K., "Technological consideration on the domestic production of high quality recycled semiconductor wastewater for industrial purpose," Ph.D. Dissertation, Youngnam university (2017).
  11. Weon, K. J., "A Study on the Pre-treatment of Biological Processes for High-concentration Semiconductor Cleaning Wastewater," Ph.D. Dissertation, Chungbuk National University, 55 (2018).
  12. Park, M. S., Yoo, C. K., "Convergence of 4th industrial technology and water industry," J Korean Soc Environ Eng., 2 (2020).
  13. B. Liu, K. Yoshinaga, J. Wub, W. Chen, M. Terashima, R. Goel, D. Pangallo and H. Yasui., "Kinetic analysis of biological degradation for tetramethylammonium hydroxide (TMAH) in the anaerobic activated sludge system at ambient temperature," Biochem. Eng. J., 114, 42-49 (2016). https://doi.org/10.1016/j.bej.2016.06.020
  14. Chen, T. K., Chen, J. N., Ni, C. H., Lin, G. T., and Chang, C. Y., "Application of a membrane bioreactor system for opto-electronic industrial wastewater treatment - A pilot study," Water Sci. Technol., 48(8), 195-202 (2003). https://doi.org/10.2166/wst.2003.0469
  15. Wu, Y. J., Whang, L. M., Huang, S. J., Yang, Y. F., Lei, C. N., and Cheng, S. S., "Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater," Water Sci. Technol., 58(5), 1085-1093, (2008). https://doi.org/10.2166/wst.2008.464
  16. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels T, De Iorio M, Brown I.J, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P. "Human metabolic phenotype diversity and its association with diet and blood pressure," Nature 453, 396-400 (2008). https://doi.org/10.1038/nature06882
  17. Son, J. R., Lee, K. J., Kang, S., Kim, G., Yang, G. M., Mo, C. Y., Seo, Y., "Development of prediction Models for Nondestructive Measurement of Sugar Content in Sweet Persimmon," J. of Biosystens Eng., 34(3), 197-203 (2009). https://doi.org/10.5307/JBE.2009.34.3.197
  18. Lee, S. J., Yoo, C. K., Choi, S. K., Chun, H. D., and Lee, I. B., "Modeling of Eco-Industrial Park (EIP) through Material Flow Analysis (MFA)", Korean Chem. Eng. Res., 44(6), 579-587 (2006).
  19. Lee, G. H., Hwangbo, S. H., and Yoo, C. K., "Fate analysis and impact assessment for vehicle Polycyclic Aromatic Hydrocarbons (PAHs) emitted from metropolitan city using multimedia fugacity model," Korean Chem. Eng. Res., 56(4), 479-495 (2018).
  20. Kwon, J. B., Lee, J. S., Lee, S. H., Jeon, C. H., and Kim, K. J., "Mutiresponse Optimization Through A New Desirablity Function Considering Process Parameter Fluctuation," Journal of The Korean Operations Research and Management Science Society, 39-44 (2004).
  21. Jeong, I. J., "A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination," Knowledge Management Review (KMR), 21(1), 27-40, (2020). https://doi.org/10.15813/KMR.2020.21.1.002
  22. Kim M. H., and Yoo, C. K., "A systematic process optimization method for advanced environmental process," 2008 Int. Conf. Control. Autom. Syst. ICCAS 2008, 2604-2609 (2008).
  23. Kim, M. H., A. S. Rao, and Yoo, C. K., "Dual optimization strategy for n and p removal in a biological wastewater treatment plant," Ind. Eng. Chem. Res., 48(13), 6363-6371 (2009). https://doi.org/10.1021/ie801689t
  24. Oh, T. S., Kim, M. J., Lim, J. J., Kim, Y. S., and Yoo, C. K. "Estimate and Environmental Assessment of Greenhouse Gas(GHG) Emissions and Sludge Emissions in Wastewater Treatment Processes for Climate Change," Korean Chem. Eng. Res., 49(2), 187-194 (2011). https://doi.org/10.9713/kcer.2011.49.2.187
  25. Phan, H. V., Hai, F. I., Ren, Zhang., Kang, Jinguo., Price, W. E., and Nghiem, L. D. "Bacterial community dynamics in an anoxic-aerobic membrane bioreactor-Impact on Nutrient and Trace Organic Contaminant Removal," Fac. Eng. Inf. Sci. - Pap. Part A. 4972., 1-5 (2016).
  26. Fu, Z., Yang, F., An, Y. and Xue, Y. "Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic / oxic-membrane bioreactor (A/O-MBR )," Biochem. Eng. J., 43, 191-196 (2009) https://doi.org/10.1016/j.bej.2008.09.021
  27. Lee, H. S., Kim, K. I., Heo, J., Kim, K. J., Kim, J. S., Lee, J. J., and Jung, I. H., "The Pilot Study Of Semiconductor Industrial Wastewater Treatment Using Membrane Bioreactor," J.KSWW & J. Korean Soc. Water Environ., 1-2 (2009).
  28. Whang, L. M., Wu, Y. J., Lee, Y. C., Chen, H. W., Fukushima, T., Chang, M. Y., Cheng, S. S., Hsu, S. F., Chang, C. H., Shen, W., Huang, C. K., Fu, R., and Chang, B., "Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater," Bioresour. Technol., 122, 70-77 (2012). https://doi.org/10.1016/j.biortech.2012.04.092