Korean Chemical Engineering Research, Vol.53, No.6, 802-807, December, 2015
새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구
A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker
E-mail:
초록
본 논문에서는 글루코스산화제, polyethyleneimine(PEI) 및 탄소나노튜브 간 물리적 흡착으로 제조된 촉매(GOx/PEI/CNT)에 새로운 가교제인 terephthalaldehyde(TPA)를 첨가하여 민감도 및 안정성이 개선된 글루코스 센서 촉매를 합성하여, 감지능 및 안정성 개선효과를 확인하였다. 새로운 가교제를 포함한 바이오 촉매는, 글루코스산화제 및 polyethyeleneimine의 관능기와 TPA의 관능기간 알돌축합반응에 의해 생성되었고, 이를 통해 생성된 새로운 전자전달구조는 글루코스의 산화반응을 촉진시켰다. 이러한 촉매활성은 전기화학적 평가를 통해 정량적으로 평가하였으며 그 결과 41.1 μAcm-2mM-1의 글루코스 민감도를 얻을 수 있었다. 또한 가교제와 글루코스산화제 및 polyethyeleneimine간의 화학반응의 형성에 의해 글루코스 산화제의 외부 손실을 최소화 하여, 센서 안정성 향상에도 크게 기여하였다. 안정성 평가를 한 결과, 3주간의 주기적인 촉매 활성 측정후에 94.6% 활성이 유지됨을 확인하였다.
In this study, we synthesized a new biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of terephthalaldehyde (TPA) (TPA/GOx/PEI/CNT) for fabrication of glucose sensor that shows improved sensing ability and stability compared with that using other biocatalysts. Main bonding of the new TPA/GOx/PEI/CNT catalyst is formed by Aldol condensation reaction of functional end groups between GOx/PEI and TPA. Such formed bonding structure promotes oxidation reaction of glucose. Catalytic activity of TPA/GOx/PEI/CNT is evaluated quantitatively by electrochemical measurements. As a result of that, large sensitivity value of 41 μAcm-2mM-1 is gained. Regarding biosensor stability of TPA/GOx/PEI/CNT catalyst, covalent bonding formed between GOx/PEI and TPA prevents GOx molecules from becoming leaching-out and contributes improvement in biosensor stability. With estimation of the biosensor stability, it is found that the TPA/GOx/PEI/CNT catalyst keeps 94.6% of its initial activity even after three weeks.
  1. International Diabetes Federation, “Diabetes Atlas. 2nd ed.,” International Diabetes Federation, 17-71(2003).
  2. Yun KE, Park MJ, Park HS, Int. J. Clin. Pract. , 61(1), 39 (2007)
  3. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L, Biotechnol. Adv. , 27, 489 (2009)
  4. Rad AS, Ardjmand M, Jahanshahi M, Safekordi AA, Korean J. Chem. Eng. , 29(8), 1063 (2012)
  5. Park HG, Hwang U, Kim IH, Korean Chem. Eng. Res. , 39, 512 (2001)
  6. Kim H, Jeong NJ, Lee SJ, Song KS, Korean J. Chem. Eng. , 25(3), 443 (2008)
  7. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem. , 18(2), 674 (2012)
  8. Sheldon RA, Appl. Microbiol. Biotechnol. , 92(3), 467 (2011)
  9. Chung Y, Hyun KH, Kwon Y, “Fabrication of Biofuel Cell Improved by π-conjugated Electron Pathway Effect Induced from a new Enzyme Catalyst Employing Terephtalal Dehyde,” Nanoscale. Accepted.
  10. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources , 286, 197 (2015)
  11. Ramanavicius A, Kausaite A, Ramanaviciene A, Biosens. Bioelectron. , 20, 1962 (2005)
  12. Kaczmarczyk B, J. Mol. Struct. , 1048, 179 (2013)
  13. Kurihara T, Oba N, Mori Y, Tomaru S, Kaino T, J. Appl. Phys. , 70, 17 (1991)
  14. Dobrikov G, Vacuum , 76, 227 (2004)
  15. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I, Science , 299, 1877 (2003)
  16. Zhang S, Wang N, Yu H, Niu Y, Sun C, Bioelectrochemistry , 67, 15 (2005)
  17. Yan XB, Chenn XJ, Tay BK, Khor KA, Electrochem. Commun. , 9, 1269 (2007)
  18. Liu Q, Lu XB, Li J, Yao X, Li JH, Biosens. Bioelectron. , 22, 3203 (2007)
  19. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy , 40(5), 2199 (2015)
  20. Cai C, Chen J, Anal. Biochem. , 332, 75 (2004)
  21. Bahulekar R, Ayyangar NR, Ponrathnam S, Enzyme Microb. Technol. , 13, 858 (1991)
  22. Xiong MP, Biomaterials , 28, 4889 (2007)
Create a Mobile Website
View Site in Mobile | Classic
Share by: