Polymer(Korea), Vol.46, No.1, 30-35, January, 2022
수계 PUA/PEGDMA 혼합 올리고머 레진에 의한 DLP 3D 프린팅 결과물의 기계적 물성 향상 및 레진 희석액의 여과특성 분석
Improvement of Mechanical Properties of DLP 3D Printouts Using Waterborne PUA/PEGDMA Mixed Oligomer Resin and Analysis of Filtration Characteristics of Resin Dilution
E-mail:
초록
본 연구에서는 상용 수계 polyurethane acrylate(PUA)와 poly(ethylene glycol) dimethacrylate(PEGDMA) 기반의 수계 레진을 digital light processing(DLP) 방식으로 3D 프린팅하였다. 출력물의 기계적 물성 조사를 통해 PUA 와 PEGDMA를 모두 포함하는 경우 단일 올리고머 레진에 비해 높은 기계적 물성을 나타냄을 확인하였다. 출력물은 물 세척만으로 표면 잔류 레진이 모두 제거되었고, 세척폐액의 수질오염에 대한 영향을 비교하기 위해 레진 희석액 내 부유물의 크기 분포 및 여과효과를 조사한 결과 모든 레진 조성물에서 0.45 μm 공극 필터에 의해 부유물이 1/3 미만으로 감소함을 확인하였다. 물 세척이 가능하며 여과에 의해 세척액 내 부유물의 효과적인 제거가 가능한 수계 레진은 수질오염을 저감하여 DLP 3D 프린팅의 보급에 기여할 것으로 예상한다.
In this study, commercial waterborne oligomers, polyurethane acrylate (PUA) and poly(ethylene glycol) dimethacrylate (PEGDMA), were introduced to formulate waterborne resin for Digital Light Processing (DLP) 3D printing. From the investigation of the mechanical properties of the printouts, it was confirmed that the resin including both PUA and PEGDMA exhibited higher mechanical properties than a single oligomer resin. The residual resin on the surface was completely removed by washing with water, and the size distribution and filtration effect of suspended matter in the diluted resin were investigated to compare waste resins’ effect on water pollution. The suspended matter in the dilution was reduced to less than one-third by filtering through a 0.45 μm filter. The waterborne resin that can be washed with water and whose suspended matter in the waste is effectively removed by filtration is expected to contribute to the spread of DLP 3D printing by reducing water pollution.
  1. Shahrubudin N, Lee TC, Ramlan R, Procedia Manuf. , 35, 1286 (2019)
  2. Ford S, Minshall T, Addit. Manuf. , 25, 131 (2019)
  3. Vivero-Lopez M, Xu X, Muras A, et al., Mater. Sci. Eng. C-Biomimetic Supramol. Syst. , 119, 111606 (2021)
  4. Hong H, Seo YB, Kim DY, et al., Biomaterials , 232, 119679 (2020)
  5. Lu Y, Mantha SN, Crowder DC, Chinchilla S, Shah KN, Yun YH, Wicker RB, Choi JW, Biofabrication , 7, 045001 (2015)
  6. Yao W, Li D, Zhao Y, Zhan Z, Gin Z, Liang H, Yang R, Micromachines , 11, 17 (2020)
  7. Yang Y, Zhou Y, Lin X, Yang Q, Yang G, Pharmaceutics , 12, 207 (2020)
  8. Vaut L, Juszczyk JJ, Kamguyan K, Jensen KE, Tosello G, Biosen A, ACS Biomater. Sci. Eng. , 6, 2478 (2020)
  9. Kim SY, Shin YS, Jung HD, Hwang CJ, Baik HS, Cha JY, Am. J. Orthod. Dentofacial Orthop. , 153, 144 (2018)
  10. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML, Sci. Rep. , 6, 31110 (2016)
  11. Borrello J, Nasser P, Iatridis JC, Costa KD, Addit. Manuf. , 23, 374 (2018)
  12. Hwangbo H, Jeon SJ, Korean J. Chem. Eng., https://link.springer.com/article/10.1007/s11814-021-0934-x (accessed Jan. 9, 2022).
  13. Bandyopadhyay A, Heer B, Composite Part B , 129, 1 (2018)
  14. Stefaniak AB, Bowers LN, Knepp AK, et al., J. Occup. Environ. Hyg. , 16, 519 (2019)
  15. Stephens B, Azimi P, El Orch Z, Ramos T, Atmos. Environ. , 79, 334 (2013)
  16. Bae JH, WonJC, Lim WB, Min JG, Lee JH, Kwon CR, Lee GH, Huh P, Polymers , 13, 44 (2021)
  17. Shie MY, Chang WC, Wei LJ, Huang YH, Chen CH, Shih CT, Chen YW, Shen YF, Materials , 10, 136 (2017)
  18. Li J, Wu C, Chu PK, Gelinsky M, Mater. Sci. Eng. R-Rep. , 140, 100543 (2020)
  19. Hinczewski C, Corbel S, Chartie T, J. European Ceram. Soc. , 18, 583 (1998)
  20. Mark JE, Macromol. Symp. , 191, 121 (2003)
  21. Palaganas NB, Mangadlao JD, Leon CC, Palaganas JO, Pangilinan KD, Lee YJ, Advincula RC, ACS Appl. Mater. Interfaces , 9, 34314 (2017)
Create a Mobile Website
View Site in Mobile | Classic
Share by: