5.乾式工法
10.5.1 適用範囲
乾式工法は石材を1枚ごとにファスナーで保持する工法で、躯体と石材間での自重、地震力、風圧力等伝達はファスナーを介してなされる。
本節の適用範囲を外れる場合はもちろん、適用範囲内であっても地震力、風圧力等の外力の適切な設定と、石材物性の把握、許容耐力の設定が重要なポイントとなる。
石材の曲げ強度や仕口部耐力の設定は事前の試験により、統計的な処理に基づいて定めるのが一般的である。
(1)利点及び注意点
( ?@ )利点
?@ 躯体の変形の影響を受けにくい。
?A 白華現象、凍結による被害を受けにくい。
?B 工程、工期短縮が図れる。
( ?A )注意点
?@風圧、衝撃で損傷した場合、脱落に直結する。
?A物性値(曲げ、仕口部耐力、ばらつき)の把握が重要である。
(2)適用高さ
建物高さを31m以下としているのは、建築基準法において、構造耐力上の検討条件が異なる場合があること、また、過去の実例でも高さ31mを超える建物での使用実績があまりないことにもよっている。
(3)適用石材
石厚 70mm以下としたのも実績による。1枚の施工可能な質量(40〜60kg程度)からみて、厚い石材では施工性が悪くなる。
(4)適用下地
近年ではコンクリート壁以外の鉄骨下地等に石材を取り付ける場合もある。乾式工法は他の石張り工法に比べ対応しやすい工法ではあるが、下地の挙動等、個別の条件に対応したファスナー金物、目地形状等の検討が必要である。ここでは、地震時等の変形量が小さいRC造、SRC造のコンクリート壁を下地とする場合を想定している。
(5)品質確保の留意点
( ?@ )石材の試験
石材は天然材料であり、同じ種類の石材であっても採石場所により性質にばらつきが生じる。このため設計図書に石材名が明記されていたとしても、各種の試験を実施し、乾式工法を採用する際に構造計算上から必須となる曲げ強さ及びだぼ部耐力等を把握しなければならない。通常、設計段階で試験が実施されることはなく、慣行的に工事着工後の初期段階で実施されている。石工事では、ALCパネルや押出成形セメント板のような製品データの定まった工業材料とは設計の考えが根本的に異なり、施工の段階で設計の品質をつくり込むことが行われる。
したがって、試験結果によっては目算と異なり、設計図書に記載の石材の寸法や厚さでは耐力上不適切で、寸法や厚さの設計変更が必要になる場合がある。この場合には、設計担当者と打ち合わせ、「標仕」1.1.8によって設計変更を行うなどの対応が必要である。
( ?A )耐風圧性
乾式工法は、石材を通常4箇所のファスナーで保持しており、実際には4本のだぼでファスナーに取り付けている。外壁に作用する風圧力は.負圧が高まることから建物の隅角部で最大値を示すのが通常である。この最大風圧力(引張力)に対して、乾式工法で取り付けられた石材が曲げ破壊やだぼ部の破壊を生じることのないように設計する必要がある。
通常、4箇所のファスナーが等分に風圧力を負担することは困難であり、1箇所が遊ぶと考え、対角方向の2箇所で支持するものとして計算を行う。また、石材の性質のばらつきを考慮したうえで、更に安全率を見込んでいる。
(?B)耐震性
地震の作用としてどの程度の力をみるかについては論議がある。現状では、(社)日本建築学会「非構造部材の耐設設計施工指針・同解説および耐震設計施工要領」にのっとるのが一般的である。同書によれば、水平力は1.0G、鉛直力は0.5Gが最大値となる。水平力に対して石材は十分な耐力を有すると考えられるが、鉛直力に対しては石材下辺の2箇所のファスナーで支えられることとなり、鉛直力に石材自重を加えた力が作用した場合にも有害な残留変形が生じないようにファスナーを設計することとなる。
最大強制変形角については個々の建築物によって異なるために特記によらなければならない。
(?C)水密性
外壁の水密性は、外壁に作用する最大風圧力の1/2の風圧力時にも屋内側へ漏水を起こさないようにするのが一般的である。外壁の乾式工法では石材間の目地・石材とサッシのような他材料との目地等、数多くの目地があり、いずれも防水性のある目地としなければならない。一般的には目地にシーリング材が充填されるが、シーリング材の寿命に依存することとなる。この外壁表面を一次止水面と考え 更に躯休表面を二次止水面に設定し.防水性を高めることが多い。
したがって、外壁の乾式石張工事に先立ち、躯体コンクリートの打継ぎ部やその他の防水上の弱点部を防水処理する。
10.5.2 材 料
( a )石材の厚み
「標仕」では、特記のない場合の石材の最小厚さを有効厚さで規定している。ジェットバーナー仕上げ(表10.2.5参照)等の粗面仕上げでは出来上りの厚さで 2mm以上厚くなるように設定しておく。
厚さは張り石の曲げ耐力や仕口部耐力に大きく影響する。 前記物性試験においても予定厚さのものに加え、5〜10mm厚い石材での試験も実施しておいた方がよい。
物性試験の結果によっては設計外力に対し、十分な強度が得られず、割付けの変更(張り石の見付け寸法の変更) が必要となる場合がある。 また仕口部耐力は石厚さを数mm増した程度では耐力が増加しないという試験結果もあるので慎重な検討が必要である。
なお 形状は矩形を原則とし、切欠き、穴あけ等を避ける。
( b )石材の加工
(1)穴あけ
だぼ用の穴あけは石材両端より辺長の1/ 4程度の位置に設置するのが、一般的である。 両端はね出しの梁と考えたときにも曲げ応力が有利になる。
穴あけ加工はドリルを用い、水冷しながらの工場加工とし、板厚の中央に正確にせん孔する。 振動ドリル等不要な衝撃を与える加工機器は用いない。
(2)石材裏面の処理
乾式工法の裏面処理については 内壁空積工法と同様に考える。
各種の織布・不織布と樹脂による裏打ち処理は万一の破損時に小片が脱落するのを防止すると同時に耐衝撃性の向上に効果がある。
( c )ファスナー
現場打込みのコンクリート壁の精度、あと施工アンカーの精度を考慮すると、上下左右、出入り方向とも10mm程度以上の調整機構が必要となる。一次ファスナーのみの形式では調整が非常に困難になるうえ、隣接石材との調整も繁雑となることから、「標仕」では二次ファスナー用いる形式を前提としている(図10.5.1及び2参照)
図10.5.1 スライド方式のファスナーの例(JASS9より)
図10.5.2 ロッキング方式のファスナーの例(JASS9より)
10.5.3 施 工
( a )工法の決定
乾式工法を外壁に適用する際には、建築基準法施行令第82条の4、平成12年建設省告示1458号に従って算出した風圧力に対して、張り石各部に発生する応力が部材の許容応力度を超えないよう、工法が特記される。
( b )取付け代
躯体の精度±10mmとファスナー寸法60mmから、石材裏面から躯体表面までの取付け代は70mmを標準とされた。過大に設定するとファスナーが大きくなり、経済性が損なわれる。
( c )下地ごしらえ
ファスナー金物用あと施工アンカーの施工に先立ち、躯体のセパレータ一部の止水処理、打継ぎ目地や誘発目地へのシーリング施工、場合により塗膜防水の施工を行う。コンクリートの欠陥部には適切な処置を施しておく。あと施工アンカーはそのアンカー耐力を確認する。
あと施工アンカーの穿孔が躯体鉄筋に当たることが多い。図面上の鉄筋位置と実際の位置との照合が必要であるが、鉄筋探知機等を利用するか、試験的な穿孔をする。鉄筋に当たった場合、穿孔位置を変更せざるを得ない。鉛直筋の場合には水平方向に逃げ、水平筋の場合には鉛直方向ヘ一次ファスナーの上下を反転して使用できる範囲内に逃げる。それでも納まらない場合には.ルーズホールを長くした一次ファスナーの役物の使用を検討する。
隣り合うあと施工アンカーの間隔及び躯体隅角部端部からの離れ距離は100mm以上確保する。
10.3.3 (b)(1)?Bで解説した打込み式のあと施工アンカー(めねじ形)は、許容引張耐力が小さいため.乾式工法では使用しない。
( d )幅木の取付け
壁最下部の幅木石は台車等の衝突による破損が多い。衝撃対策として10.4.3(b) (4)に示したようにモルタルを充填する。
排水処理を考慮し、石材には裏面処理等のぬれ色・白華対策が必要となる(図10.5.3参照)。
図10.5.3 幅木部分の例
( e )ファスナー及び石材の取付け
(1)一次ファスナーの取付け
一次ファスナーの出入りはライナープレートを用い、上下左右はルーズホールで調整して取付け位置を定め、一次ファスナーをあと施工アンカーに固定する。 石張りの水平精度は一次ファスナーの取付け精度で決まるため.特に上下方向は載荷によるファスナーのたわみを考慮して正確に取り付ける。現場浴接は行わない。ダブルナット又は緩止め特殊ナットを使用する。
(2)二次ファスナーと石材の取付け
一次及び二次ファスナーの緊結は、(1)と同様にボルトによる摩擦接合とし.現場浴接を行わない。
石材を二次ファスナーに連結するためのだぼを石材に固定する方法には、ファスナーの形式により二とおりがある。上の石の下部と下の石の上部を支える二次ファスナーが別個になっている場合(例えば「標仕」表10.2.4のスライド方式) には、あらかじめ上部のだぼを石材に固定しておくことができる。しかしながら、通しだぼのような場合(例えば「標仕」表10.2.4のロッキング方式)には、だぼはあと付けにならざるを得ない。
次に.スライド形式のファスナーを用いた場合の石材の代表的な取付け手順を示す。まず石材の上部のだぼを事前にだぼ穴充填材を用いて確実に取り付ける。出人り及び左右の精度を調整して二次ファスナーを一次ファスナーに取り付ける。 石材下部のだぼ穴にだぼ穴充填材を充填し、直ちに二次ファスナーに取り付いているだぼに石材を乗せ、二次ファスナーに荷重をあずける。次に.石材の上部のだぼを通して上部用の二次ファスナーを一次ファスナーに取り付ける。出入墨・割付け墨に合わせて張ったピアノ線等を指標として.石材の取付け精度を確認する。確認後、上部の二次ファスナーの固定を緩まないように確実に締め付ける。
この繰返しにより、一次ファスナーで調整しきれなかった分を調整し.壁面の下部より上部に向かって石材を積み上げていく。
最下段のファスナーの場合は、張り石を仮置きし調整する。載荷によるファスナー金物のたわみやなじみにより、ファスナーと下部石材との間のクリアランスが確保できない場合は、一次ファスナで再調整する。下部石材と上部石材の間にスペーサー(アクリル製等)を用いた調整を行うと、ファスナーに荷重がかからず、上部石材の荷重が下部石材に伝達されてしまうので、このような用い方はしない。
(3)だぼの固定
だぼ穴充填材がはみ出すと変位吸収のためのルーズホールをふさいでしまう。充填量に留意すると同時に不要な充填材は硬化前に除去する。石材上端ファスナーとだぼでスライド機構を設ける場合は、だぼの出寸法の管理が重要である。抜け防止のため、つば付きだぼピンを用いることも多い。
( f )目 地
(1)目地幅の設定
乾式工法では.目地内にファスナの金物が配置されることになり、施工精度を向上させなければ十分に通りよく、クリアランスを確保した施工は難しい。そのため、上下の石材間にスペーサーを挿入して目地幅を調整することがあるが、スぺーサーを撤去しないと上部石材の荷重がファスナーではなく下部石材に伝逹されてしまう。このようなスペーサーの用い方をしてはならない。また縦長の張り石では地震に石材の回転が生じ上部ファスナーとの接触も生じかねない。目地幅は広めに設定することが望ましい。
(2)シーリング材の充填
乾式工法の目地には、壁面の防水のためにシーリング材を充填する。目地幅・深さともに8mmを最低値と考える。
シーリング材は2成分形ポリサルファイド系シーリング材が一般的である。シリコーン系や1成分形ポリサルファイド系シーリング材では、シーリング材の成分による石材の汚れが発生する。他部位との取合いで2成分形変成シリコーン系シーリング材も使用される。