第二次検定(実地)
年別 解答解説


令和5年度
詳細

問題1 経験記述問題
問題2 施工計画(記述)
問題3 施工管理(記述)
問題4 躯体工事(記述)
問題5 仕上工事(五肢)
問題6 法  規(五肢)

令和4年度
詳細

問題1 経験記述問題
問題2 施工計画(記述)
問題3 施工管理(記述)
問題4 仕上工事(記述)
問題5 躯体工事(五肢)
問題6 法  規(五肢)

令和3年度
詳細

問題1 経験記述問題
問題2 仮設計画(記述)
問題3 施工管理(記述)
問題4 躯体工事(記述)
問題5 仕上工事(五肢)
問題6 法  規(五肢)

令和2年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

令和元年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成30年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成29年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成28年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成27年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成26年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成25年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成24年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

平成23年度
詳細

問題1 経験記述問題
問題2 施工(仮設)計画
問題3 躯体工事(記述/正誤)
問題4 仕上工事(記述/正誤)
問題5 施工管理
問題6 法  規

第二次検定
過去問 分野別 解答解説
問題1 経験記述 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題2 仮設計画 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題3 施工管理 ※令和4,3年は問題3
それ以前は問題5
令和04 令和03
令和02 令和元 平成30
平成29 平成28 平成27
平成26 平成25 平成24
平成23
問題4 躯体工事 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題5 仕上工事 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題6 法  規 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
右向き三角1?マークをクリックすると内容が表示されます(以下共通)
第一次検定(学科)
年別 解答解説

令和6年度(速報)
詳細

【 午前 】
1. [ No.01 ]〜[ No.06 ]
2. [ No.07 ]〜[ No.15 ]
3. [ No.16 ]〜[ No.20 ]
4. [ No.21 ]〜[ No.30 ]
5. [ No.31 ]〜[ No.40 ]
6. [ No.41 ]〜[ No.44 ]
【 午後 】
7. [ No.45 ]〜[ No.50 ]
8. [ No.51 ]〜[ No.60 ]
9. [ No.61 ]〜[ No.72 ]

令和5年度
詳細

【 午前 】
1. [ No.01 ]〜[ No.15 ]
2. [ No.16 ]〜[ No.20 ]
3. [ No.21 ]〜[ No.30 ]
4. [ No.31 ]〜[ No.39 ]
5. [ No.40 ]〜[ No.44 ]
【 午後 】
6. [ No.45 ]〜[ No.54 ]
7. [ No.55 ]〜[ No.60 ]
8. [ No.61 ]〜[ No.72 ]

令和4年度
詳細

【 午前 】
1. [ No.01 ]〜[ No.15 ]
2. [ No.16 ]〜[ No.20 ]
3. [ No.21 ]〜[ No.30 ]
4. [ No.31 ]〜[ No.39 ]
5. [ No.40 ]〜[ No.44 ]
【 午後 】
6. [ No.45 ]〜[ No.54 ]
7. [ No.55 ]〜[ No.60 ]
8. [ No.61 ]〜[ No.72 ]

令和3年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]
5. [ No.46 ] 〜[ No.50 ]
【 午後 】
6. [ No.51 ] 〜[ No.70 ]
7. [ No.71 ] 〜[ No.82 ]

令和2年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]
5. [ No.46 ] 〜[ No.50 ]
【 午後 】
6. [ No.51 ] 〜[ No.70 ]
7. [ No.71 ] 〜[ No.82 ]

令和元年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]
5. [ No.46 ] 〜[ No.50 ]

【 午後 】
6. [ No.51 ] 〜[ No.70 ]
7. [ No.71 ] 〜[ No.82 ]

平成30年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]
5. [ No.46 ] 〜[ No.50 ]

【 午後 】
6. [ No.51 ] 〜[ No.70 ]
7. [ No.71 ] 〜[ No.82 ]

平成29年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]
5. [ No.46 ] 〜[ No.50 ]

【 午後 】
6. [ No.51 ] 〜[ No.70 ]
7. [ No.71 ] 〜[ No.82 ]

平成28年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

平成27年度
詳細

【 午前 】      
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

平成26年度
詳細

【 午前 】      
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

平成25年度
詳細

【 午前 】      
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

平成24年度
詳細

【 午前 】      
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

平成23年度
詳細

【 午前 】
1. [ No.01 ] 〜[ No.15 ]
2. [ No.16 ] 〜[ No.20 ]
3. [ No.21 ] 〜[ No.33 ]
4. [ No.34 ] 〜[ No.45 ]

【 午後 】
5. [ No.46 ] 〜[ No.70 ]
6. [ No.71 ] 〜[ No.82 ]

第一次検定
過去問 分野別 解答解説
問題1 建築学 令和05 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題2 共通問題 令和05 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題3 躯体工事 令和05 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題4 仕上工事 令和05 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
問題5 施工計画 令和05 令和04 令和03
問46-50
令和02 令和元
平成30 平成29
問46-51or50
平成28 平成27 平成26
平成25 平成24 平成23
問題6 施工管理 問45-54(10問全問解答)
令和05 令和04 令和03
問51-70(20問全問解答)
令和02 令和元
平成30 平成29
※ 工程管理・品質管理は
問51or50-70
平成28 平成27 平成26
平成25 平成24 平成23
問題7 応用能力 令和05 令和04 令和03
問題8 法  規 問71-82(12問中8問選択)
令和05 令和04
令和03 令和02 令和元
平成30 平成29 平成28
平成27 平成26 平成25
平成24 平成23
建築工事監理指針
1章 各章共通事項 序節 監督職員の立場及び業務
01節 共通事項
02節 工事関係図書
03節 工事現場管理
04節 材  料
05節 施  工
06節 工事検査及び技術検査
07節 完成図等

2章 仮設工事 01節 共通事項
02節 縄張り,遣方 , 足場他
03節 仮設物
04節 仮設物撤去等
05節 揚重運搬機械

3章 土工事 01節 一般事項
02節 根切り及び埋戻し
03節 山留め

4章 地業工事 01節 一般事項
02節 試験及び報告書
03節 既製コンクリート杭地業
04節 鋼杭地業
05節 場所打ちコンクリート杭地業
06節 砂利,砂及び
   捨コンクリート地業等

07節 「標仕」以外の工法

5章 鉄筋工事 01節 一般事項
02節 材  料
03節 加工及び組立て
04節 ガス圧接
05節 機械式継手,溶接継手

6章 コンクリート工事 01節 一般事項
02節 種類及び品質
03節 材料及び調合
04節 発注、製造及び運搬
05節 普通コンの品質管理
06節 現場内運搬並びに
   打込み及び締固め

07節 養  生
08節 型  枠
09節 試  験
10節 軽量コンクリート
11節 寒中コンクリート
12節 暑中コンクリート
13節 マスコンクリート
14節 無筋コンクリート
15節 流動化コンクリート
[ 参考文献 ]

7章 鉄骨工事 01節   一般事項
02節   材  料
03節   工作一般
04節   高力ボルト接合
05節   普通ボルト接合
06節  溶接接合
07節  スタッド,デッキプレート溶接
08節  錆止め塗装
09節   耐火被覆
10節  工事現場施工
11節  軽量形鋼構造
12節  溶融亜鉛めっき工法
13節  鉄骨工事の精度
14節  資  料

8章 コンクリートブロック工事等 01節 一般事項
02節 補強コンクリートブロック造
03節 コンクリートブロック帳壁及び塀
04節 ALCパネル
05節 押出成形セメント板
一般事項、材料
外壁パネル工法
間仕切壁パネル工法
溝掘り及び開口部の処置
     施工上の留意点

9章 防水工事 01節 一般事項
02節 アスファルト防水
03節 改質As.シート防水
04節 合成高分子系
   ルーフィングシート防水

05節 塗膜防水
06節 ケイ酸質系塗布防水
07節 シーリング

10章 石工事 01節 一般事項
02節 材  料
03節 外壁湿式工法
04節 内壁空積工法
05節 乾式工法
06節 床および階段の石張り
07節 特殊部位の石張り

11章 タイル工事 01節 一般事項
02節 セメントモルタルによる
   陶磁器質タイル張り

03節 接着剤による
   陶磁器質タイル張り

04節 陶磁器質タイル
   型枠先付け工法

05節 「標仕」以外の工法

12章 木工事 01節 一般事項
02節 材  料
03節 防腐・防蟻・防虫
04節 RC造等の内部間仕切等
05節 窓、出入り口その他
06節 床板張り
07節 壁及び天井下地
08節 小屋組(標仕以外)
09節 屋根野地,軒回り他
   (標仕以外)

13章 屋根及びとい工事 01節 一般事項
02節 長尺金属板葺
03節 折板葺
04節 粘土瓦葺
05節 と  い

14章 金属工事 01節 一般事項
02節 表面処理
03節 溶接,ろう付けその他
04節 軽量鉄骨天井下地
05節 軽量鉄骨壁下地
06節 金属成形板張り
07節 アルミニウム製笠木
08節 手すり及びタラップ

15章 左官工事 01節 一般事項
02節 モルタル塗り
03節 床コンクリート直均し仕上げ
04節 セルフレベリング材仕上
05節 仕上塗材仕上げ
06節 マスチック塗材仕上げ
07節 せっこうプラスター塗り
08節 ロックウール吹付け

16章 建具工事 01節 一般事項
02節 アルミニウム製建具
03節 樹脂製建具
04節 鋼製建具
05節 鋼製軽量建具
06節 ステンレス製建具
07節 木製建具
08節 建具用金物
09節 自動ドア開閉装置
10節 自閉式上吊り引戸装置
11節 重量シャッター
12節 軽量シャッター
13節 オーバーヘッドドア
14節 ガラス

17章 カーテンウォール工事 01節 共通事項
02節 メタルカーテンウォール
03節 PCカーテンウォール

18章 塗装工事 01節 共通事項
02節 素地ごしらえ
03節 錆止め塗料塗
04節 合成樹脂調合ペイント塗
   (SOP)

05節 クリヤラッカー塗(CL)
06節 アクリル樹脂系
  非水分散形塗料塗(NAD)

07節 耐候性塗料塗(DP)
08節 つや有合成樹脂
  エマルションペイント塗り(EP-G)

09節 合成樹脂エマルションペイント塗
   (EP)

10節 ウレタン樹脂ワニス塗(UC)
11節 オイルステイン塗
12節 木材保護塗料塗(WP)
13節 「標仕」以外の仕様

19章 内装工事 01節 一般事項
02節 モルタル塗り,ビニル床タイル
   及びゴム床タイル張り

03節 カーペット敷き
04節 合成樹脂塗床
05節 フローリング張り
06節 畳敷き
07節 せっこうボード、
   その他ボード、
   及び合板張り

08節 壁紙張り
09節 断熱・防露
10節 内装材料から発生する室内空気汚染物質への対策

20章 ユニットその他工事 01節 共通事項
02節 ユニット工事等
  2 フリーアクセスフロア等
  3 可動間仕切
  4 移動間仕切
  5 トイレブース
  6 手すり
  7 階段滑り止め
  8 床目地棒
  9 黒板,ホワイトボード
 10
 11 表示
 12 タラップ
 13 煙突ライニング
 14 ブラインド
 15 ロールスクリーン
 16 カーテン,カーテンレール
03節 プレキャスト
   コンクリート工事

04節 間知石及び
   コンクリート間知ブロック積み

05節 敷地境界石標

21章 排水工事 01節 共通事項
02節 屋外雨水排水
03節 街きょ,縁石,側溝

22章 舗装工事 01節 共通事項
02節 路  床
03節 路  盤
04節 アスファルト舗装
05節 コンクリート舗装
06節 カラー舗装
07節 透水性アスファルト舗装
08節 ブロック系舗装
09節 砂利敷き
10節 補  修
11節 「標仕」以外の舗装
12節 用  語

23章 植栽,屋上緑化工事 01節 共通事項
02節 植栽基盤
03節 植  樹
04節 芝張り,吹付けは種
   及び地被類

05節 屋上緑化

★鉄骨特集★

構造図の見方
(日本建築構造技術者協議会)

鉄骨工事 工場製作
材料
めっきFAQ
(日本溶融亜鉛鍍金協会)

★鉄骨工事特集


鉄骨用語集
(日鉄エンジニアリング)

ここに注意!
鉄骨工事管理のポイント

工場製作編及び現場施工編
((一社) 日本建設業連合会)

スタッド溶接の施工と管理 技術資料
(日本スタッド工業(株))

設備工事のポイント
(若手向け)

【 着工時 】
1-1 設備工事実施施工計画
1-2 施工図・機器製作図等 作成計画
1-3 電力、電話,上下水道,ガスガス引込計画
1-4 主要機器搬入揚重計画
1-5 設備工事実施施工計画
1-6 総合プロット図の作成
1-7 鉄骨スリーブ、取付ピースの検討
1-8 RC躯体スリーブの検討
1-9 配管の腐食対策
1-10 設備関係官公署手続一覧表
1-11 工事区分表

【 地業・土工事 】
2-1 接地工事
2-2 土間配管

【 地下工事 】
3-1 地中外壁貫通
3-2 機械室・電気室工事
3-3 ピットの検討

【 躯体工事 】
4-1 打込電線管
4-2 デッキスラブのコンクリート打込工事
4-3 防火・防煙区画貫通処理
4-4 防水層貫通処理
4-5 設備機器の耐震対策

【 屋上工事 】
5-1 屋上設備機器設置
5-2 屋上配管・配線・ダクト工事
5-3 防振対策検討
5-4 屋上ハト小屋

【 下地・間仕切り 】
6-1 天井割付と設備器具
6-2 天井内設備工事
6-3 間仕切内配管
6-4 天井内機器取付
6-5 遮音壁貫通処理
6-6 ALCパネル貫通処理
6-7 換気・エアバランス
6-8 性能検査実施要領(工程内検査(配管))

【 中間検査 】
7-1 社内中間検査

【 受 電 】
8-1 受電に向けて
【 内 装 】
9-1 電気・空調機器取付(仕上材との取合い)
9-2 衛生器具取付(仕上材との取合い)

【 外 装 】
10-1 扉・ガラリ関連工事
10-2 外壁面設備器具取付け(1)
10-3 外壁面設備器具取付け(2)
10-4 EVオーバーヘッドの感知器用点検口の防水対策
10-5 保温・塗装工事

【 外 構 】
11-1 外構配管設備工事検討
11-2 外構設置機器検討

【 竣工前 】
12-1 試運転調整
12-2 建築確認完了検査
12-3 消防完了検査
12-4 総合連動試験
12-5 性能検査実施要項(竣工編)

【 引渡し 】
13-1 建物設備取扱説明・保守管理説明
13-2 完成図・保証書
13-3 竣工図書、備品、メーター読合せ

【 その他 】
14-1 社内竣工検査「関係法令、不具合予防」の留意点
(一社) 日本建設業連合会 HPより
★施工計画書雛型
施工計画書の雛型データ
(エクセル形式)
((一社)日本建設業連合会)
Rhinoceros入門

入門?@-1
入門?@-2
入門?@-3
建設物価建築費指数
★建築費指数 2020 .12
コンクリート工事に関するJIS規格

JIS検索
(日本工業標準調査会)

【 種類・強度・品質 】
JIS A 5308に適合する
レディミクストコンクリートの種別
> JIS A 5308  
レディーミクストコンクリート

【 コンクリートの材料 】
■セメント
> JIS R 5210  
ポルトランドセメント
> JIS R 5211  
高炉セメント
> JIS R 5212  
シリカセメント
> JIS R 5213  
フライアッシュセメント
> JIS R 5214  
エコセメント

−−−−−−−−−−−−
■骨材
> JIS A 5005  
コンクリート用砕石及び砕砂
> JIS A 5011-1  
コンクリート用スラグ骨材
 −第 1 部:高炉スラグ骨材

> JIS A 5011-2  
コンクリート用スラグ骨材
 −第 2 部:フェロニッケルスラグ骨材

> JIS A 5011-3  
コンクリート用スラグ骨材
 −第 3 部:銅スラグ骨材

> JIS A 5011-4  
コンクリート用スラグ骨材
 −第 4 部:電気炉酸化スラグ骨材

> JIS A 5021  
コンクリート用再生骨材 H
> JIS A 5022  
再生骨材Mを用いたコンクリート
> JIS A 5023  
再生骨材Lを用いたコンクリート
> JIS A 5031  
一般廃棄物,下水汚泥又は
 それらの焼却灰を溶融固化した
 コンクリート用溶融スラグ骨材


————————————
■混和剤
> JIS A 6204  
コンクリート用化学混和剤
> JIS A 6201  
コンクリート用フライアッシュ
> JIS A 6202
   コンクリート用膨張材
> JIS A 6203  
セメント混和用
 ポリマーディスパージョン及び
 再乳化形粉末樹脂



鉄骨工事に関するJIS規格 
【 溶接材料 】
> JIS B 1198
頭付きスタッド
【 デッキプレート 】
> JIS G 3302 Z08 フェローデッキ
 JIS G3302
溶融亜鉛めっき鋼板及び綱帯

【 錆止め塗装 】
> JIS K 5674
鉛・クロムフリーさび止めペイント
> JIS H 8641 溶融亜鉛めっき

NEWSチャンネル

6章 コンクリート工事 1節 一般事項

第6章 コンクリート工事


01節 一般事項

6.1.1 適用範囲

(a)この章は、工事現場施工のコンクリート工事に適用する。

また、平成25年版「標仕」では、コンクリート工事の品質管理の向上等を目的に、主に次の変更が行われた。

(1) 設計基準強度をコンクリートの要求品質の一つに位置付け、これを満足するための管理項目として、使用するコンクリートの強度と構造体コンクリートの強度を明示した。


(2) 材料及び調合の条件を、コンクリートの品質項目や製造から外し、「コンクリートの材料及び調合」として独立させ、調合管理強度を満たすための条件として設計基準強度や構造体強度補正値との関係を含め、セメントや骨材等のコンクリート用材料ごとの事項を一つにまとめた。


(3) 普通コンクリートの一部として扱っていた「暑中におけるコンクリートの取扱い」は新たに「暑中コンクリート」として節立てし、普通コンクリートの一般規定から独立させた。また、設計基準強度27N/mm 2 以上、かつ、36N/mm 2 以下のコンクリートは、普通コンクリートの一般規定とは別に扱っていたが、普通コンクリートと同じ扱いとし「高い強度のコンクリートの取扱い」を削除した。


(4)構造体コンクリートの仕上り状態及びかぶり厚さの確認並びにそれらの事項が所要の品質を満足しない場合の補修及びその後の検査を明記した。


(b) 作業の流れを図6.1.1に示す。


(c)施工計画書の記載事項は、おおむね次のとおりである。

なお 赤文字 を考慮しながら品質計画を検討する。

(1)コンクリート工事の施工計画書

?@ 工程表(配合計画書の提出、試し線り、柱取外し等の時期)
?A 配合計画書、計画調合の計算書(軽量コンクリートの気乾単位容積質量(「標仕」6.10.2(d))を含む)
?B コンクリートの仕上りに関する管理基準値、監理方法等
?C 仮設計画(排水、コンクリートの搬入路等)
?D 打込み量、打込み区画、打込み順序及び打止め方法
?E 打込み作業員の配置、作業動線
?F コンクリートポンプ車の圧送能力、運搬可能距離の検討
?G コンクリートポンプ車の設置場所、輸送管の配置及び支持方法
?H コンクリート運搬車の配車

?I 圧送が中断したときの処置
?J 圧送後、著しい異状を生じたコンクリートの処置
?K 打継ぎ面の処置方法
?L 上面の仕上げの方法(タンピング)
?M 打込み後の養生(暑中、寒中)
?N コンクリートの補修方法
?O 供試体の採取(採取場所、養生方法)
?P 試験所


(2) 型枠工事の施工計計画

?@ 型枠の準備量
?A 型枠の材料
?B 型枠緊張材の種別及び緊張材にコーンを使用する箇所
?C コンクリート寸法図(スケルトン、コンクリート躯体図、コンクリートプラン)
?D 基準部分の型枠組立図
?E 型枠材取外しの条件(材齢又は構造計算により安全を確認する場合)
?F はく離剤使用の有無

図6.1.1コンクリート工事の作業の流れ.jpg
図6.1.1 コンクリート工事の作業の流れ


6.1.2 基本要求品質

(a) コンクリートの「材料」に関しては、JIS A 5308(レディーミクストコンクリート)に適合した材料が使用されており、JIS Q 1011(適合性評価:日本工業規格への適合性の認証ー分野別認証指針(レディーミクストコンクリート))では、製造工場から提出される材料試験の結果によりその品質を確認することにしている。


(b) コンクリート部材の断面形状、寸法及び位置は、設計図書に建築物として必要な性能を有するように設計された値が指定されており、「標仕」6.2.5 (a)による許容差の範囲に収まるように施工する必要がある。「標仕」表 6.2.3 では一般的な許容差の標準値を示しているが、この数値は本来建築物の機能、部位、仕上げの程度等によって変動するものであり、共通的に定まるものではない。 例えば,石工事(「標仕」10.1.3(c)参照) や左官工事 (「標仕」15.2.3 (c)参照)等のようなコンクリート工事のあと工程となる仕上材料に要求される精度により、「標仕」 表 6.2.3 をそのまま使えない場合もある。 このため、各工事ごとにこの許容差を定めるに当たっては、寸法誤差が生じた場合の影響度等も考慮して、「品質計画」において、適切な値を定める必要がある。

コンクリートは全断面において均質なものとして設計されており、打ち上がったコンクリートはこれを満足させる必要がある。 しかし、打ち上がったコンクリートの内部を確認することは非常に困難であり表面の状態を確認することによって、内部の状態を推定することになる。一般にコンクリート部材の内部と比べて表面付近は鉄筋や型枠等の影響で欠陥が生じやすくなる。このため、「標仕」6.1.2 (b)では、「密実な表面状態」を要求事項とし、コンクリート内部の品質を含めて表面状態で確認することにしている。 コンクリート表面に豆板等の欠陥がある場合には、コンクリートの耐久性や強度に影響を及ぼすため、「標仕」では,せき板取外し後に コンクリート表面を確認することにしている。「品質計画」においては、第一に密実なコンクリートを打ち込むための具体的な方法の提案をするとともに、もし、豆板等が発生した場合、その程度に応じた補修方法等を定めるようにする。この場合の補修方法については 6.9.6 (b)を参考にするとよい。


(c) 建築物の構成部材としてのコンクリートの強度は、実際に出来上がった構造体コンクリートからコアを採取して試験によってその確認ができる。しかし、この方法は建築物を傷つけることになるため、新築建築物にあっては適切ではない。 このため「標仕」6.2.2 では、工事現場において構造体に打ち込まれるコンクリートと同ーのコンクリートを採取して、工事現場内で建築物と同様な温度条件となるように養生した試験体により構造体コンクリートの強度を推定している。 実際のコンクリートの強度は、柱、梁、壁、スラブ等の各部位によって強度の発現にばらつきがあることが分かっており、構造物のどの部位においても設計基準強度を滴足させるため、調合設計において所要の補正を行うことにしている。「所要の強度を有する」とは,こういったことを勘案して 実際の構造体コンクリートの強度が設計基準強度を満足するように適切な養生を行い、試験体の強度から構造体コンクリートの強度を確認すればよい。

「構造耐力、耐久性、耐火性」等は、コンクリートに要求される重要な性能である。これらについては、一般に本章で説明する事項を実現することで必要な性能を得ることができるようになっているが、(b)で説明したように寸法の誤差や、部分的な欠陥の発生を完全になくすことは現実的ではない。 このため、所要の「構造耐力、耐久性,耐火性」を満足させるための、寸法許容差や、欠陥が生じた場合の程度の判断基準及び補修方法をあらかじめ定めておくようにする。


6章 コンクリート工事 2節 種類及び品質

第6章 コンクリート工事


2 節 コンクリートの種類及び品質

6.2.1 コンクリートの種類

(a) 平22年版「標仕」までは、使用骨材によってコンクリートの種類分けを行っていたが、近年、スラグ骨材等を含め密度の異なる各種の骨材が開発・使用され、特に細骨材は混合して使用される場合もあることから、平成25年版「標仕」では、気乾単位容積質量でコンクリートの種類を分類し、おおむね気乾単位容和質量が 2.1〜2.5 t/m 3 の普通コンクリートと、より気乾単位容積質量の小さい軽量コンクリートの 2種類とされた。


(b) 寒中コンクリート、暑中コンクリート、マスコンクリート、無筋コンクリート及び流動化コンクリートは、使用材料、施工時期・施工方法・施工場所等の施工条件、要求性能等によって 10節までとは異なる品質管理が必要なため「特別仕様のコンクリート」として 11節から 15節に別記されている。


(c) 平成16年 6月に工業標準化法が改正され、平成 17年 10月 1日からJISマーク表示制度は、国による認定制度から登録認証機関による製品認証制度となった。これによって、JIS A 5308(レディーミクストコンクリ ート)もこれまでの「工場認定」 から「製品認証」へと変更された。

「標仕」でも平成22年版の改定以降、I 類コンクリートは.JIS Q1001(適合性評価一日本工業規格への適合性の認証一 一般認証指針)及び JIS Q1011 (適合性評価一日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))に基づき、JIS A 5308への適合を認証されたコンクリー ト II 類コンクリートは I 類以外のJIS A 5308に適合したコンクリートとされている。

「標仕」では、従来より、建築工事には特別な場合を除き、 JIS A 5308 に適合するレディーミクストコンクリートで対応できると考えられている。そのうえで、適合を認証された I 類コンクリートを使用することを原則としているが、山間部、離島等で運搬可能時間の距離内にJISマーク表示認証を取得した製品(以下、この章では「JISマーク表示認証製品」という。)を製造する工場(以下、この章では 「 JISマーク表示認証工場 」 という 。) がない場合でも.II 類コンクリートであれば、基礎、主要構造部等建築基準法第37条に規定する部分に適用できると考えてよい。

なお、建築基準法第 37条の指定建築材料が適合すべき規格及び品質に関する技術的基準を定めた平成12年建設省告示第1446号の一部が平成28年6月13日に改正(国土交通省告示第814号)され、建築物の基礎や主要構造部等に使用するコンクリートが適合すべき日本工業規格は、JIS A5308(回収骨材を使用するものを除く)に改められた。

よって、従来、国土交通大臣の認定で必要であったエコセメントや再生骨材H を使用したコンクリートについても、平成28年版「標仕」からは、一部の材料の組合せや用途を除いて特記せずに使用できることとなった。但し、回収骨材を使用したコンクリートを使用する場合には従来通り国土交通大臣の認定を取得した上で、「標仕」6.2.1(d)に基づいて特記しなければならない。参考に、上記国土交通省告示第814号と同時に国土交通省住宅局建築指導課長から発出された、技術的助言 国住指第770号 平成28年 6月13日「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について」の抜粋を下記に示す。

建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について(技術的助言)

(国住指第770号 平成28年 6月13日)

建築基準法第37条の規定に基づく標記基準については、平成28年6月23日付け国土交通省告示第814号として別添のとおり公布されたので通知する。

中略



2. 改正概要

レディーミクストコンクリートに関する JIS A 5308が2014年に改正されたことを踏まえ、指定建築材料であるコンクリートが適合すべき日本工業規格として、JIS A5308(レディーミクストコンクリート)- 2014を定めることとする。ただし、当該 JISのうち、「回収骨材を使用するもの」については、建築材料として使用する場合における管理方法等の知見が得られたいないため、使用できないこととする。


2014年の JIS A 5308 のレディーミクストコンクリートの種類を表6.2.1 に示す。

表6.2.1 JIS A 5308 : (2019改正)によるレディーミクストコンクリートの種類
表6.2.1_JISA5308レディーミクストコンクリートの種類(2019改正).jpg
(注)荷卸し地点での値であり、50cm及び60cmがスランプフローの値である。


(d)「標仕」では、建築基準法第 37条第二号による国土交通大臣認定のコンクリートは,設計担当者が特記することとしているので、特記された場合には、認定条件等を十分に確認して使用することになる。


6.2.2 コンクリートの強度

(a)「標仕」ではコンクリートの設計基準強度は、36N/mm 2 以下(軽量コンクリートでは 27N/mm 2 以下)としている。

なお 従来、軽量コンクリートの設計基準強度は 27N/mm 2 未満であったが、(一社)日本建築学会「JASS5 鉄筋コンクリート工事」の軽量コンクリート2種の規定に合わせ、平成 25年版「標仕」では 27 N/mm 2 以下に変更された。

高強度化が流れではあるが、4〜5階建て、数千m 2 程度のRC造建築物では高強度コンクリートを使用することはほとんどない。


(b) 使用するコンクリートの強度とは、使用するコンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことであり、荷卸し地点でコンクリート試料を採取し、標準養生した供試体の材齢 28日の圧縮強度で表される。 ポテンシャルの圧縮強度は、構造体コンクリートの強度が設計基禅強度を満足するように、設計基準強度に構造体コンクリートの強度と標準養生した供試体強度との差を考慮した値(構造体強度補正値(S):6.3.2(1)(?A)を参照)を加えた調合管理強度以上でなければならない。


(c) 構造体コンクリートとは、型枠内に打ち込まれて養生され、硬化して構造体あるいは部材を形成しているコンクリートのことである。構造体コンクリートの強度は、初期に十分な湿潤養生が施されれば、材齢28日以降も長期にわたって強度が増進し、材齢 91日においても強度増進は続き、停止することはない。 しかし、コンクリート工事においては適切な材齢を定め、その材齢において設計基準強度を満足するように定める必要がある。建築基準法施行令第74条第1項第二号に基づき、昭和56年建設省告示第1102号の第1第二号では、コンクリートの強度は、コンクリートから切り取ったコア供試体について強度試験を行った場合に、材齢91日において設計基誰強度以上であることと定めている。「標仕」が定める構造体コンクリートの強度の基準となる材齢91日は、この告示の規定を適用したものである。

一方、実際のコンクリート工事において構造体コンクリートの強度をコア供試体で試験することは、構造体に損傷を与え、かつ、修復が必要となるため困難である。このため、一般には工事現場で使用するコンクリートから試料を採取し、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度から構造体コンクリートの強度を推定し、品質管理を行っている。上記告示第1102号の第1第一号では、コンクリートの強度は、現場水中養生を行った供試体について強度試験を行った場合に、材齢 28日において設計基準がよく強度以上であることと定めている。「標仕」においても、この告示の規定に基づき構造体コンクリートの強度推定の管理材齢の一つとして28日を規定している。

なお、平成19年版「標仕」では、調合管理強度に相当する値は、材齢 28日を基準に、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(△ F = 3 N/mm 2 )、気温によるコンクリート強度の補正値( T ) を考慮して(Fc 十 △F+T )としていたが、平成22年版「標仕 」では、調合管理強度は、材齢 91日を基準に、△ FとTに代わり構造体強度補正値(S:「標仕」表6.3.2 を参照)を取り入れ( Fc+S )に改められている。

構造体コンクリートの強度とは、構造体あるいは部材そのものの強度ではなく、構造体あるいは部材の中に直径と高さの比が 1:2 の円柱を考え、仮にその円柱を圧縮試験したとするときに得られる強度であり、一般には構造体あるいは部材から切り取ったコア供試体の圧縮強度がそれに近いと考えられている。しかし、実際のコンクリート工事において、構造体コンクリートの強度をコア供試体で試験するのは困難である。このため、工事現場で採取した供試体を、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度で表すこととした。

構造体コンクリートの強度に関する調査・研究によって、現場水中養生した供試体の圧縮強度は、材齢28日のコア供試体の圧縮強度より大きく、材齢91日のコア供試体の圧縮強度と同等かやや小さいことが分かってきた。また、現場封かん養生した供試体の圧縮強度は、現場水中養生した供試体の圧縮強度よりやや低いことも分かってきた。このため、「標仕」では現場水中義生した供試体あるいは現場封かん養生した供試体の圧縮強度を基に構造体コンクリートの強度を推定することとした。


(d)使用するコンクリートの強度及び構造体コンクリート強度の推定値の判定は、9節の6.9.4 及び 6.9.5 によって行う。6.2.2(b)でも記したように、使用するコンクリートとは.工事に用いるために工事現場に搬入したコンクリートのことであり、その強度は、コンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことである。したがって、使用するコンクリートの強度は、荷卸し地点で採取して標準養生した供試体の材齢28日の圧縮強度で表すこととし、その値は調合管理強度以上でなければならず、かつ、JIS A5308(レディーミクストコンクリート)の呼び強度の強度値を満足しなければならない。


6.2.3 気乾単位容積質量

(a) コンクリートの気乾単位容積質量は、使用する骨材の密度や調合によって異なり、構造計算で固定荷重を算定するときに、鉄筋コンクリートの質量を求めるために用いる値である。平成25年版「標仕」から、従来の使用骨材の種類による区分から、新たにコンクリートの気乾単位容積質量による区分に変更され、そのための標準的な判断基準として、JASS 5 の規定値を参考に数値が示された。


(b) 軽量コンクリートの気乾単位容積質量は、別途「標仕 」10節で1種、2種の種類ごとに標準的な値の範囲が示されている。



6.2.4 ワーカビリティー及びスランプ

ワーカビリティーとスランプの関連等について次に示す。

(1) ワーカビリティーは、打込み場所並びに打込み方法及び締固め方法に応じて、型枠内並びに鉄筋及び鉄骨周囲に密実に打ち込むことができ、かつ、 粗骨材の分離が少ないものとする。また、スランプの所要値は、特記がなければ、基礎、基礎梁、土間スラブでは15cm又は 18cm、その他の部材では 18cmとする。


(2) ワーカビリティーは、運搬、打込み、締固め及び仕上げのフレッシュコンクリートの移動・変形を伴う作業の容易さとそれらの作業によってもコンクリートの均一性が失われないような総合的な性質であり、フレッシュコンクリートの流動性の程度を表すスランプとは別の概念である。

(3) 作業の容易さからいえば、スランプが大きく流動性が高いほうがワーカビリティーが良いといえるが、スランプが過大になると粗骨材が分離しやすくなるとともにブリーディング量が大きくなり、コンクリートの均一性が失われる。そこで、単位セメント量や細骨材率を大きくするとフレッシュコンクリートの粘性が大きくなり、粗骨材の分離は生じにくくなる。


(4) スランプを大きくし、かつ、単位セメント量や細骨材率を大きくすれば、見かけ上はワーカビリティー の良いコンクリートが得られる。 しかし 単位水量や単位セメント量が過大になると乾燥収縮率が大きくなってひび割れが生じやすくなるとともにセメントペーストやモルタル分の多いコンクリートとなって、打上りコンクリートの表面の品質が悪くなる。


(5) このため、作業の容易さだけでワーカビリティーを評価するのではなく、ブリーディングや骨材の分離ができるだけ少なくなるようにするという条件も考慮しなければならない。


(6) スランプは、打込み時のフレッシュコンクリートに要求される直要な品質項目の一つであるが、ここでいう所要スランプとは、荷卸し地点でのスランプである。所要スランプ18cmというのは、許容差を含めて考えればよく、その値は JIS A 5308(レディーミクストコンクリート)の規定によれば ± 2.5cmである 。

スランプフローの基準

JIS A5308 2019年改正により
普通コンクリートにおけるスランプフローは
 45±7.5cm,
 50±7.5cm,
 55±7.5cm,
 60±10cm
の4種類となっている。



6.2.5 構造体コンクリートの仕上り

(a) コンクリート部材の位置及び断面寸法の許容差

(1) コンクリート部材の位置及び断面寸法は,所定の許容差の範囲内になければならないが、これは次の理由による。

(?@) 構造体としての耐力及び耐久性の確保

(?A) 仕上げ二次部材又は設備等の納まり上の要求

(?B) 美観上の要求


(2)部材の位置及び断面寸法の測定は,一般的には次のように行う。

特記された部材又はサンプリングした部材について、基準墨からスケール等を用いて測定する。 測定部分は両端及び中央の 3箇所程度行う。

柱・梁等は直接測定できることが多く問題は少ないが、床・壁等の断面寸法は、両側から測定して計算で求めると測定誤差がきく大なることがある 。 そこで、開口部等を利用して直接測定する。

むやみに測定項目や測定数を増やすことは、測定費用や時間を要し本来の目的から逸脱することになる。コンクリート部材の位置及び断面寸法は、型枠の変形等がなければ、型枠により決まるものであり、補修も困難であることから、コンクリート打込み前の型枠の設計・掛出し・組立等を確実に行うことが必要である。 コンクリート打込み後は型枠の変形が生じたと見られる部分等について、確認のために測定する。

(3) (1)及び(2)に基づいて各部材の位置及び断面寸法を測定し、その結果、位置及び断面寸法の精度が「標仕」表6.2.3 の許容値を満足しない場合は、「標仕」6.9.6 に従って監督職員に報告するとともに適切な処置等を講じなければならない。



(b) コンクリート表面の仕上り状態

(1) せき板に接するコンクリートの仕上り状態は特記によるが、コンクリートの打放し仕上げの場合は、「標仕」表6.2.4 の種別に応じた「表面の仕上り程度」を目安とする。コンクリートの仕上り状態を良好にするには、不陸を少なくするために変形量の少ない型枠設計を行い、コンクリート打込みの際は、目違い等が生じないようにコンクリートの締固めを行うことが重要である 。

(2) コンクリートの仕上りの平たんさは、せき板に接する面は型枠の変形等により、せき板に接しない床上面等は左官の均し精度により決まる。

平たんさの測定方法には、JASS5 で定められた JASS 5 T-604 (コンクリートの仕上がりの平たんさの試験方法)があるが、試験用器具が特殊で取扱い方法も難しいため、一般的には下げ振り、トランシット、レベル、水糸、スケール等を使用してコンクリート面の最大、最小を測定する方法等で行われている。

「標仕」表6.2.5 の平たんさの標準値は,仕上げの種類だけでなく、建物の規模や仕上り面に要求される見ばえ等によっても異なるので、適切な値を品質計画で提案させ、検討するとよい。


なお、25年版「標仕」では、表6.2.5 の対象となる柱、梁、壁の種類に「接着剤による陶磁器質タイル張り」が追加され、これに伴い従来のタイル工法は「セメントモルタルによる陶磁器質タイル張り」と名称が変更された。床についてもフリーアクセスフロアが追加された。 フリーアクセスフロアには,支柱調整式(下地床の不陸に伴う高さを調整する機能を有するも)のと置敷式(高さを調整する機能がなく、高さは下地床の精度に従うもの)の2 種類があり、支柱調整式は ±10〜15mm 程度の調整代があるため、従来からの「二重床」に含め、置敷式は新たに「フリーアクセスフロア(置敷式)」として追加された。



6章 コンクリート工事 3節 コンクリートの材料及び調合

第6章 コンクリート工事


3 節 コンクリートの材料及び調合

6.3.0 一般事項

建築物に使用するコンクリートが所要の性能を満足するようにするためには、使用前に、各材料が所定の品質を満足することを試験又は生産者から提出された資料等により確認するとともに、「標仕」 2 節[ コンクリートの種類及び品質]に示される各種規定を満足するよう、試し練り等を行って適切に調合することが重要である。


6.3.1 コンクリートの材料

6.2.1(c)でも述べたように、平成28年6月13日に平成12年 建設省告示第1446号の一部が改正され、エコセメントや再生骨材H を使用したコンクリートについても JIS A5308に適合したものであれば国土交通大臣の認定を受けなくても使用できるようになったため、平成28年版「標仕」からは、これらのコンクリートについても一部の材料の組合せや用途を除いて特記をせずに使用できることとなった。

(a) セメント

(1) セメントの分類

( i ) セメントの分類を図6.3.1 に示す。

わが国におけるポルトランドセメント(JIS R 5210)の全アルカリは、低アルカリ形を除くとNa 2 O換算( Na 2 O + 0.658K 2 O ) で 0.75 %以下であるが、使用する骨材によってはアルカリ骨材反応を起こすおそれがある。

なお、かつては「アルカリ骨材反応抑制対策に関する指針について」(平成元年 7月 建設省住指発第244号)の通達で、低アルカリ形ポルトランドセメントの使用がアルカリ骨材反応抑制対策の一つとして記されていた。 しかし、低アルカリ形が1995年に 11.000t 生産されたほかはほとんど製造されておらず、普通ポルトランドセメントのアルカリ量も低くなっていることなどから、平成12年にこの通達は廃止され、平成14年の国土交通省通達では「低アルカリ形の使用による抑制対策」の条文が削除されている。

図6.3.1_JISによるセメントの分類.jpg
図6.3.1 JIS によるセメントの分類

(ii) ポルトランドセメントは普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント及び耐硫酸塩ポルトランドセメントの6種類を基本とし、これに低アルカリ形の6種類を加え全部で12種類あり、その主な品質は表6.3.1に示すとおりである。

表6.3.1 ポルトランドセメントの種類 ( JIS R5210:2009)
表6.3.2_ポルトランドセメントの品質A.jpg

?@普通ポルトランドセメント(普通セメントと略称される場合もある。)は、建築のコンクリート工事用として現在最も多く使用されているセメントである。「標仕」では、特記のない場合は普通セメント又は混合セメントのA種を使用することになっているが、高炉セメント及びフライアッシュセメントともA種はほとんど生産されていないがめ、一般には普通セメントを使用することが多い。

?A早強ポルトランドセメント(早強セメントと略称される場合もある。)の比表面積(ブレーン値)はJISでは表6.3.1のように定められているが、市販品では 4,700 cm 2 g程度である。比表面積はセメント粒子の細かさを示す値で、この値が大きいほど細かくセメントと水との化学反応(水和反応)が活発になるため、図6.3.2に示すように他のポルトランドセメントよりも早期に強度が得られる。そのため、工期の短縮に有効であると共に、硬化初期の水和発熱量(凝結・硬化中に起こる発熱を水和熱という。)が大きいことから寒中コンクリートにも適している。ただし、発熱によるひび割れ等の弊害を伴うこともあるので、使用する季節や用途に注意が必要である。

図6.3.2_モルタルの圧縮強さ(JIS R5201).jpg
図6.3.2 モルタルの圧縮強さ (JIS R 5201)
(「セメントの常識」より)

(iii) 高炉セメント(JIS R 5211)は、普通ポルトランドセメントに適量の高炉スラグ微粉末を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)が規定されているが、A種及びC種の生産量は少なく、市販品としてはB種のものが一般的である。


(iv) シリカセメント(JIS R 5212)は、普通ポルトランドセメントに適量のシリカ質の混合材を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)。耐薬品性に優れているが、2010年以降国内では生産されていない。


(v) フライアッシュセメント(JIS R5213)は、普通ポルトランドセメントに適量のフライアッシュ(火力発電所等で石炭の燃焼時に発生する微粉状の石炭灰)を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)が規定されているが、高炉セメントと同様、一般にはB種のものが多く流通している。


(vi) 上記高炉セメント、シリカセメント、フライアッシュセメントの3種類を混合セメントと呼び、このうちB種及びC種の混合セメントは、ポルトランドセメントと比較すると、化学的な作用又は海水に対する抵抗力が大きいなどの長所がある。しかし、同一調合の場合、一般に中性化の進行が早く、早期強度の発現が小さいので、かぶり厚さや型枠の存置期間の検討が必要である。

表6.3.2 混合セメントの種類 (JIS R5211 : 2009、R5212:2009及びR5213:2009)
表6.3.1_混合セメントの種類A.jpg


(?F) エコセメントは、都市ごみ焼却灰を主とし、必要に応じて下水汚泥等を加えたものを主原料として製造される資源リサイクル型のセメントであり、2002年に JIS R5214 (エコセメント)として JIS化された。JIS R5214では、構成鉱物や塩化物イオン含有量によって普通エコセメントと速硬エコセメントに分類されている。2003年には、これらのうち塩化物イオン量が 0.1%以下の普通エコセメントのみが、JIS A5308(レディーミクストコンクリート)に取り入れられた。また、 2004年 4月からはグリーン購入法特定調達品目にも指定されている。


解説
ポルトランドセメントとは
固まったときの色合いが、イギリスのポートランド島の石灰石に似ているので、ポルトランドセメントと名づけられた。粘土、石灰石を粉砕、焼成して石膏を加えてつくる。

(2) 高炉セメント及びフライアッシュセメントの品質

(i) 高炉セメントは、高炉スラグ微粉末の混合比(分量)によって使用したコンクリートの硬化途中の強度発現性状等が異なるため、上記 (1)(?B)でも記したように、高炉スラグ微粉末(分量)によって3種類に分類されている。B種は規格上 30%を超え60%以下となっているが、市販されている高炉セメントの高炉スラグの混合比(分量)は 43%前後のものが多い。

普通ポルトランドセメントと比較すると次のような特徴がある。

?@ 初期強度はやや小さいが、4週以降の長期強度は同等又は同等以上になる。
?A 耐海水性や化学抵抗性が大きい。
?B 一定量以上使用した場合にアルカリ骨材反応の抑制に効果がある。


(ii) フライアッシュセメント

良質なフライアッシュはコンクリート中でボールベアリングのような働きをし、練混ぜ水を減少させることができ、ワーカビリティーの良いコンクリートが得られる。 また、水和発熱量が比較的小さく、マスコンクリートに適する。更に、高炉セメントと同様にアルカリ骨材反応の抑制にも効果がある。

なお、上記(1)(?D)でも記したように、フライアッシュの混合比(分量)によって3種類に分類されており、B種は規格上 10%を超え20%以下となっている。市販されているフライアッシュセメントのフライアッシュの混合比(分量)は 17%前後のものが多い。





(b) 骨 材

(1) 骨材は、コンクリート体積の約7割を占め、その品質がコンクリートの諸性質に大きな影響を及ぼすので、良い品質のコンクリートをつくるためには原則として.堅硬で物理的・化学的に安定であり、適度な粒度・粒形を有し、有害量の不純物・塩化物等を含まない骨材を使用する。しかし、骨材の品質は、地域差もあり、あらかじめその地域の骨材の種類と品質の実態を把握しておくことが重要である。やむを得ず低品質の骨材を使用しなければならない場合には、コンクリートの要求性能と骨材の品質との関係を試し錬りを行って十分に把握し、必要に応じて計画調合等を検討することが重要である。


(2) 骨材の種類及び品質

(i) 骨材の種類は、「 標仕」6.3.1 (b)により、JIS A5308の附属書A (規定)[レディーミクストコンクリート用骨材]に規定されている砕石及び砕砂、スラグ骨材、人工軽量骨材、再生骨材H並びに砂利及び砂である。

(ii) フェロニッケルスラグ細骨材、銅スラグ細骨材及び電気炉酸化スラグ骨材は、普通骨材に比べて密度が大きく、使用される地域も限定されている。また、再生骨材H は、全国的に十分な供給量がまだ流通していない。よって、これらの骨材を使用する場合は、設計担当者が特記しなければならない。


(iii) 骨材の品質は、砕石及び砕砂は、JIS A5005(コンクリート用砕石及び砕砂)に、高炉スラグ粗骨材及び高炉スラグ細骨材は、JIS A5011-1(コンクリート用スラグ骨材ー第1部:高炉スラグ骨材)に、フェロニッケルスラグ骨材、銅スラグ骨材、電気炉酸化スラグ骨材及び再生骨材H は、それぞれ JIS A5011-2(コンクリート用スラグ骨材ー 第2部:フェロニッケルスラグ骨材)、JIS A5011-3(コンクリート用スラグ骨材ー第3部:銅スラグ骨材)、JIS A5011-4(コンクリート用スラグ骨材ー第4部:電気炉酸化スラグ骨材)及びJIS A5021(コンクリート用再生骨材H ) に規定されている。


(iv) スラグ骨材を他の骨材と併用する場合、表面がガラス質のため、使用するスラグ細骨材の種類によっては保水性が小さくなり、 天然の骨材に比ベブリーディング量がやや多くなったりブリーディング速度が速くなったりする場合があるので注意しなければならない。 このような場合には、微粉末の使用、実積率の大きい骨材の使用、高性能AE減水剤の使用等材料の選定に加え、水セメント比の低減等の検討が必要である。


(v) 骨材の密度及び吸水率

?@ 骨材の強さは、密度及び吸水率によりある程度の判定ができる。通常、絶乾密度は 2.5g/cm 2 以上、吸水率は 3.0%(細骨材は 3.5%)以下ならよいとされている(表6.3.3 参照)。

しかし、砂利や砂の場合、一部の地方では、これを満足するものが人手できない場合もある。 この場合は、絶乾密度は 2.4g/cm 2 以上、吸水率は 4.0%以下なら、コンクリートとして所要の性能が得られることを試し練り又は信頼できる資料等により確かめられれば使用してよい。

表6.3.3 JIS A 5005 : 2009による砕石・砕砂の物理的性質
表6.3.3_砕石・砕砂の物理的性質.jpeg


?A 普通の石材の吸水率は表6.3.4 に示すとおりであるが、おおむね吸水率の少ないものほど堅硬、密実で良質の骨材になると考えられる。

表6.3.4 石材の吸水率
表6.3.4_石材の吸水率.jpeg


?B骨材の絶乾状態及び気乾状態並びにその際の吸水量、含水量等の関係を図6.3.3 に記す。

図 6.3.3_骨材の含水状態.jpeg
図 6.3.3 骨材の含水状態


(3) アルカリ骨材反応抑制対策

( i ) アルカリ骨材反応に関しては、昭和60年頃から問題が顕在化し、平成元年には建設省の技術審議官通達、監督課長通知、建築指導課長通知等が出されたが、平成14年には新たに「アルカリ骨材反応抑制対策について」(平成14年国官技第112号:技術審議官等通達)と連用のための「「アルカリ骨材反応抑制対策について」について」(平成14年 国営技第55号:建築課長通達)の(別紙)「アルカリ骨材反応抑制対策(建築物)実施要領」が、平成15年には「アルカリ骨材反応抑制対策(建築物)実施要領に関する運用について」 の事務連絡が出され、その後のJIS A5308(レディーミクストコンクリート)の改正、 JIS Q1011 (適合性評価一日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))の制定、「標仕」の改定を経て、その対策が確立されてきた。

(ii) 「アルカリ骨材反応抑制対策(建築物) 実施要領」における検査・確認の方法を、次に示す。

?@ アルカリシリカ反応性試験方法(化学法)による骨材試験は、施工着手前、工事中 1回/6箇月、かつ、産地が変わった場合に、受注者等が公的試験機関に依頼して行う。 また、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。

?A アルカリシリカ反応性試験方法(モルタルバー法)による骨材試験は、コンクリート生産工程管理用試験に規定される骨材のアルカリシリカ反応性試験方法(迅速法) で骨材が無害であることを受注者等が確認する。この場合も、施工着手前、 工事中1回/6 箇月、かつ、産地が変わった場合に、公的試験機関で行い、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。


(iii) 「標仕」では、高炉スラグ骨材を除いて、原則として骨材は「アルカリシリカ反応性試験の結果が無害と判定されるもの」(アルカリシリカ反応性による区分Aのもの)を使用することとしているのでアルカリシリカ反応性による区分を受注者等にレディーミクストコンクリート配合計画書及びアルカリシリカ反応性試験成績表で確認させておく必要がある。

なお、アルカリシリカ反応性試験方法は、JIS A1145(骨材のアルカリシリ力反応性試験方法(化学法)) 又は JIS A1146(骨材のアルカリシリカ反応性試験方法(モルタルバー法))による。


(iv) しかし、地域等によっては、上記の試験の結果が 「無害と判定されないもの」や「試験を行っていないもの」(アルカリシリカ反応性による区分Bのもの)を使用せざるを得ない場合もある。 その場合は、事前調査により設計担当者が区分Bのものを使用することを特記しなければならない。 特記により区分Bの骨材を使用する場合は「標仕」 6.3.1 (b)(2)に基づいた対策を受注者等に提案させ、その内容を設計担当者等と検討して対応の可否を判断する 。

(4) 高炉スラグ粗骨材を使用する場合は、JIS A5011-1 に基づいて使用する骨材の絶乾密度吸水率及び単位容積質量が、 同 JIS の区分Nを満足することを受注者等に確認させ、その結果を報告させることが必要である(表 6.3.5 参照)。なお、高炉スラグ粗骨材は、普通骨材より吸水率が大きく気乾状態で用いると練混ぜ運搬及び打込み中にフレッシュコンクリートの品質が変動しやすいので、事前に散水により吸水させて用いることが望ましい。

(5) 電気炉酸化スラグ骨材は、JISマーク表示認証製品で、生産工場からレディーミクストコンクリート工場に直接納入されていること及び電気炉酸化スラグ粗骨材の絶乾密度による区分が Nであること(表6.3.5 参照)、並びに再生骨材H は、 JIS マーク表示認証製品であることを受注者等に確認させ、その結果を報告させることが必要である。


表6.3.5 JIS A 5011-1 : 2013による高炉スラグ粗骨材(区分N) 及び
JIS A 5011-4 : 2013による電気炉酸化スラグ粗骨材(区分N) の材質
表6.3.5_高炉スラグ粗骨材及び電気炉酸化スラグ粗骨材(区分N).jpg


(6) 粗骨材の最大寸法等

(i) 粗骨材の最大寸法

粗骨材は、鉄筋相互間及び鉄筋とせき板との間を容易に通る大きさでなければならない。 粗骨材の最大寸法は「標仕」 において次のように定めている。

?@ 砕石、高炉スラグ粗骨材、電気炉酸化スラグ粗骨材及び再生粗骨材H は20mmとする。また、砂利は 25mmとする。

?A 基礎等で 断面が大きく鉄筋量の比較的少ない部材の場合は、「標仕」5.3.5[鉄筋のかぶり厚さ及び間隔]の範囲で砕石、高炉スラグ粗骨材及び再生粗骨材Hは 25mm、また、砂利は 40mmとすることができる。

?B 鉄筋のあきは、粗骨材の最大寸法の 1.25倍以上とする(「標仕」5.3.5 (d)(1) 参照)

?C 無筋コンクリートの粗骨材の最大寸法は、コンクリート断面の最小寸法の1/4 以下、かつ、40mm以下とする。ただし、捨コンクリート及び防水層の保護コンクリートの場合は25mm以下とする (「 標仕 」 6.14.2 (a)参照)。

(ii) 骨材の粒度及び粒形

?@ 骨材は、適切な粒度分布のものでなければならない。 粒度の良否によってコンクリートのワーカビリティーや単位セメント量に著しい差が生じ、ひいてはコンクリートの強度や耐久性にも影響を与える。

?A 骨材の形は、球形に近いものが理想的で、偏平、細長のもの、かど立っているものなどは、コンクリートのワーカビリティーを悪くし、同一水セメント比で同一スランプを得るための細骨材率が大きくなり、単位水量、単位セメント量も多くなる。 また、偏平、細長のものは、コンクリートが外力を受けたときに不均ーな応力分布が生じて、破壊しやすいためにコンクリートの強度も低下する。

?B 粒度分布を表すには次のような方法があり通常 1) 及び 2) が用いられる。

1) 各ふるいの通過率
2) 粗粒率〈FM〉
3) 各ふるいの累加残留率
4) 各ふるいの残留率

?C コンクリートの品質を確保して圧送性を良くするには、骨材の粒度分布が適切であるとともに 0.3mm以下の細骨材が 15〜30%混入していることが望ましい。


(7) その他留意が必要な骨材の品質

(i) 骨材の単位容積質量・実積率

?@ 単位容積質量は、単位容積当たりの骨材質量 (kg /?) で、骨材の粒度が適切であれば、最大寸法が大きいほど単位容積質量は大きい。

?A 実積率は骨材を容器に詰めた場合、どの程度隙間なく詰まっているかを表す指標で、 6.3.1 式より求める。 空隙率は 6.3.2 式による。

実積率
=骨材の単位容積質量 / 骨材の絶乾密度 × 100 (%)  (6.3.1式)

空隙率 =100 − 実積率(%)..........(6.3.2式)

?B 同一粒度、同一密度の骨材では、実積率が大になるほど骨材の粒形が良いことになる。また、骨材の密度、最大寸法及び粒度が同様な場合には、粒度分布が良いほど実積率は大となる。

?C 骨材に対応する標準的実積率を表6.3.6 に示す。


表 6.3 6 骨材の実積率の標準的な値
表6.3.6_骨材の実績率の標準的な値.jpg


(ii) 骨材中の泥分

泥分が骨材表面に付着していると、骨材とセメントペーストとの付着を妨げ、コンクリートの強度を低下させる。また、コンクリート中に混合している場合は、単位水量が増加し、体積変化も大きく、ひび割れも発生しやすい。

(iii) 細骨材の有機不純物

有機不純物としては、腐植土、泥炭質等があり、これらに含まれるフミン酸やタンニン酸の量が多いと、セメントベースト中の Ca(OH) 2 と反応して有機酸石灰塩を生じ、コンクリートの硬化を妨げ、強度や耐久性を低下させる場合がある。

(iv) 細骨材中の塩化物

?@ コンクリート中の鋼材は、コンクリートの pHが10 以上の場合は、鋼の表面が鉄の水酸化物 Fe(OH) 2 の不働態皮膜で覆われているので錆は発生しないが、多量の塩化物が混合すると、塩化物イオンによって不働態皮膜が破壊されて錆が発生する。

?A JIS A5308 附属書(規定)では、砂に含まれる塩化物量を NaCl 換算で 0.04 %以下と規定しているが、2003年の JIS R5210(ポルトランドセメント)の改正により普通ポルトランドセメントの塩化物イオンが 0.02%以下から 0.035%以下となった。これにより、コンクリートの各材料の塩化物イオンの規格上限値でコンクリート中の塩化物イオン量を算出すると0.30kg/m 3 を超える場合があるので、受注者等にレディーミクストコンクリート配合計画書でコンクリート中の塩化物イオン量が 0.30kg/m 3 を超えないことを確認させ、その結果を報告させるようにするとよい。

なお、プレテンション方式のプレストレストコンクリート部材に用いる場合は 0.02 %以下とすることになっている。

(v) 骨材を混合して使用する場合

?@ 最近では1種類の骨材だけでは所要の品質や量を確保することが困難となり、複数の骨材を混合して使うことが多くなった。

?A 骨材を混合して使用する場合は、JIS A5308 附属書A(規定)の A.9[骨材を混合して使用する場合]による。

1) 同一種類の骨材(例:川砂利と陸砂利(玉砕も含む。)、海砂と山砂)を混合して使用する場合は、混合したものの品質が所定の規定に適合しなければならない。ただし、混合前の各骨材の絶乾密度、吸水率、安定性及びすりへり減量については、それぞれの骨材の規定に適合しなければならない。

2) 異種類の骨材(例:川砂利と砕石、海砂と砕砂あるいは高炉スラグ細骨材等)を混合して使用する場合は、混合前の骨材の品質がそれぞれの規定に適合しなければならない。ただし、粒度調整や海砂の塩化物量の低減目的に混合する場合には、粒度と塩化物量については、混合したものが所定の規定に適合していればよい。

(vi) 全国的に見た骨材の品質と種類を図6.3.4に示す。

図6.3.4_全国的に見た骨材の種類(2012暦年).jpg
図6.3.4 全国的に見た骨材の種類(2012暦年)
(経済産業省製造産業局住宅産業窯業建材課
「生コンクリート統計四半期報」のデータによる)
解説
砂(細骨材)、砂利(粗骨材)の容積比
は約30%と約40%。コンクリートの骨となる材料で、砂は細骨材、砂利は粗骨材といい、5mmを境に区別している。




(c)  水

(1) 水は、コンクリートの凝結時間、硬化後のコンクリートの強さ等の諸性質、鋼材の発錆等に影響があり、極めて重要な材料といえる。

(2) 一般に、セメントの水和に必要な水量は、セメント質量の約40%といわれ、施工時に必要な水量の内、残りの部分はコンクリートのワーカビリティーを良くするものであり、コンクリートの硬化に関与しない余剰水となる。 また、単位水量が多いと乾燥収縮が大きくなったり、透水性が高くなり、耐久性が低下しやすい。

(3) 水中の不純物が鉄筋コンクリートに与える影響

(i) 一般に、アルカリ性の強い水はセメントの凝結を遅くし、弱酸性の水は凝結を早め、強酸性では硬化しにくくなる。

(ii) 苦土や石灰は、セメントの安定性を低下させる。

(iii) 塩化物や塩素は、鉄筋の腐食を助長する 。

(iv) 水の不純物の種類と量の限度は、使用するセメントの組成、使用量等によって異なり、規定しにくいとされているが、濃度が1,000ppm 以下ならば、ほとんど影響がないといわれている。

(4) 水の使用基準等については、JIS A5308(レディーミクストコンクリート)附属書C(規定)があり、この抜粋を次に示す 。

JIS A5308: 2011

附属書C(規定) レディーミクストコンクリートの練混ぜに用いる水

C.1 適用範囲
この附属書は、レディーミクストコンクリートの練混ぜに用いる水(以下、水という。)について規定する。

C.2 区分 
水は、上水道水、上水道水以外の水及び回収水に区分する。

C.3 定義 
この附属書で用いる主な用語の定義は、次による。

C.3.1 上水道水以外の水
河川水、湖沼水、井戸水、地下水などとして採水され、特に上水道水としての処理がなされていないもの及び工業用水。ただし、回収水を除く。

C.3.2 回収水
レディーミクストコンクリート工場で、洗浄によって発生する排水のうち、運搬車プラントのミキサ、ホッパなどに付着したレディーミクストコンクリート及び戻りコンクリートの洗浄排水(以下、コンクリートの洗浄排水という。)を処理して得られるスラッジ水及び上澄水の総称。

C.3.3 スラッジ水
コンクリートの洗浄排水から、粗骨材、細骨材を取り除いて、回収した懸濁水。

C.3.4 上澄水
スラッジ水から.スラッジ固形分を沈降その他の方法で取り除いた水。

C.3.5 スラッジ
スラッジ水が濃縮され、流動性を失った状態のもの。

C.3.6 スラッジ固形分
スラッジを105〜110℃で乾媒して得られたもの。

C.3.7 スラッジ固形分率
レディーミクストコンクリートの配合における単位セメント量に対するスラッジ固形分の質量の割合を百分率で表したもの。

C.4 上水道水
上水道水は、特に試験を行わなくても用いることができる。

C.5 上水道水以外の水
上水追水以外の水の品買は、C.8.1 の試験方法によって試験を行い、表 C.1 に示す規定に適合しなければならない。


表 C.1 上水道水以外の水の品質
表C.1_上水道水以外の水の品質.jpg


C.6 回収水

C.6.1 品質
回収水の品質は.C.8.2 の試験方法によって試験を行い、 表C.2 に示す基定に適合しなければならない。 ただし、その原水は C.4 又は C.5 の規定に適合しなければならない。

なお、スラッジ水を上水道水、上水道水以外の水、又は上澄水と混合して用いる場合の品質の判定は、スラッジ固形分率が 3 %になるように、スラッジ水の濃度を5.9 %に調整した試科を用い、C.8.2.4及び C.8.2.5の試験を行う。


表 C.2 回収水の品質
表C.2_回収水の品質.jpg


C.6.2 スラッジ固形分率の限度

a) スラッジ水を用いる場合には、スラッジ固形分率が 3%を超えてはならない。なお、レディーミクストコンクリートの配合において、スラッジ水中に含まれるスラッジ固形分は水の質量には含めない。

b) スラッジ固形分率を 1%未満で使用する場合には、12.1に規定する表8(レディーミクストコンクリー ト配合計画書)の目標スラッジ固形分率の欄には、’'1 %未満’'と記述することとし、この場合のスラッジ固形分率の値は、管理期間ごとに 1%未満となることを確認すればよいこととする。

なお、このスラッジ固形分率を 1%未満で使用する場合には、スラッジ固形分を水の質量に含めてもよい。

C.6.3.3 スラッジ水の管理
スラッジ水の管理は、次による。

a) バッチ濃度調整方法 又は連続濃度測定方法を用いる。

バッチ濃度調整方法は、スラッジ水の濃度を一定に保つ独立した濃度調整槽をもつ場合に用いることができる管理方法である。独立した濃度調整槽をもたない場合には、スラッジ水の濃度を連続して測定できる自動設度計を設置して測定することによる連続濃度測定方法を用いればスラッジ水の管理ができる。

b) C.6.2 に適合するように、スラッジ水の管理状況に対応して、コンクリートに使用するスラッジ水の濃度を定めて管理する。

c) バッチ濃度調整方法を用いる場合には、スラッジ水の濃度を測定・記録し、目標スラッジ固形分率となるようにスラッジ水の計量値を決定して、スラッジ水を使用する。

なお、スラッジ水の設度の測定は、1日1 回 以上、かつ、濃度調整の都度行う。

d) 連続濃度測定方法を用いる場合に、はスラッジ水を使用する度にその濃度を自動濃度計によって測定・記録し、自動演算装置を用いて目標スラッジ固形分率となるようにスラッジ水の計量値を決定して、スラッジ水を使用する。

e) スラッジ水の濃度の測定精度の確認は、少なくとも3 か月に1 回の頻度で.C.8.2.6によって行う。 また、スラッジ水の濃度の測定方法として自動濃度計を用いる場合は、始業時にスラッジ水の密度から自動濃度計の表示値を確認し、これを記録する。

f) スラッジ水の濃度及び測定器具の精度確認の記録は、購入者からの要求があれば、スラッジ固形分率の算出根拠として提出する。

C.7 水を混合して使用する場合
2種類以上の水を混合して用いる場合には、それぞれが C.4、C.5 又はC.6 の規定に適合していなければならない。

JIS A5308:2011





(d) 混和材料

(1) 混和材料の使用目的は、おおむね次のとおりである。

(i ) ワーカビリティーの改良
(ii) 長期材齢又は初期材齢における強度の増大
(iii) 水密性の増大
(iv) 乾燥収縮の低減
(v) 耐久性の向上


(2) 混和材料の分類を、 図 6.3.5 に示す。

図6.3.5_混和材料の分類.jpeg
図6.3.5 混和材料の分類

混和材料について「標仕」 6.3.l (d)では、種類及び適用は特記 によるとし、特記がなければ.種類は次によるとしている。

( i ) 混和剤の種類は、JIS A6204(コンクリート用化学混和剤)によるAE剤、AE減水剤又は高性能AE減水剤とし、化学混和剤の塩化物イオン(Cl - )量による区分は、I 種とする。また、防錆剤を併用する場合は、JIS A6205(鉄筋コンクリート用防せい剤) による防錆剤とする。

(ii) 混和材の種類は、JIS A6201(コンクリート用フライアッシュ)によるフライアッシュの ?T 種、 lI 種若しくは?W種 JIS A6206( コンクリート用高炉スラグ微粉末)による高炉スラグ微粉末、JIS A6207(コンクリート用シリカフューム) によるシリカフューム又は JIS A6202(コンクリート用膨張材)による膨張材とする。

(3) JIS A6204(コンクリート用化学混和剤)の抜粋を次に示す。

なお、JIS A6204 は 2011 年の改正で、6.2のコンクリート試験における空気量は、基準コンクリートの空気量に 3.0%を加えたものに対して、0.5 % を超える差があってはならないこととなった。 また、練混ぜのバッチ数は 1 バッチとすること、圧縮強度試験用供試体の養生温度は 20±2℃とすること、コンクリートの試験日数は 1 日とすること及び管理試験の名称を性能確認試験と改め、 6箇月に 1回の頻度で実施することとなった。


JIS A 6204 : 2011

1 適用範囲
この規格は、コンクリート用化学混和剤(以下、化学混和剤という。)として用いる AE剤、高性能減水剤、硬化促進剤、減水剤、AE減水剤、高性能AE減水剤及び流動化剤について規定する。

3 用語及び定義
この規格で用いる主な用語の定義は、JIS A0203(コンクリート用語)によるほか次による。

3.1 化学混和剤
主として、その界面活性作用及び/ 又は水和調整作用によって、コンクリートの諸性質を改善するために用いる混和剤。

3.2 AE剤
コンクリートなどの中に、多数の微細な独立した空気泡を一様に分布させワーカビリティー及び耐凍害性を向上させるために用いる化学混和剤。

3.3 高性能減水剤
所要のスランプを得るのに必要な単位水量を大幅に減少させるか、又は単位水量を変えることなくスランプを大幅に増加させる化学混和剤。

3.4 硬化促進剤
セメントの水和を早め、初期材齢の強度を大きくする化学混和剤。

3.5 減水剤
所要のスランプを得るのに必要な単位水量を減少させる化学混和剤。

3.6 AE減水剤
空気連行性能をもち、所要のスランプを得るのに必要な単位水量を減少させる化学混和剤。

3.7 高性能AE減水剤
空気連行性能をもち、AE減水剤よりも高い減水性能及び良好なスランプ保持性能をもつ化学混和剤。

3.8 流動化剤
あらかじめ練り混ぜられたコンクリートに添加し、これをかくはんすることによって、その流動性を増大させることを主たる目的とする化学混和剤。

3.9 標準形
化学混和剤の種類で、コンクリートの凝結時間をほとんど変化させないもの。

3.10 遅延形
化学混和剤の種類で、コンクリートの凝結を遅延させるもの。

3.11 促進形
化学混和剤の種類で、コンクリートの凝結及び初期強度の発現を促進させるもの。

3.12 基準コンクリート
化学混和剤の性能を試験する場合に基準とする化学混和剤を用いないコンクリート。ただし、流動化剤の性能を試験する場合にはAE剤を使用する。

3.13 試験コンクリート
化学混和剤の性能を試験する場合に試験の対象とする化学混和剤を用いたコンクリート。

3.14 形式評価試験
製品を開発した当初に性能確認として行う全項目試験。

3.15 性能確認試験
形式評価試験で確認された性能と同等の性能をもつことを定期的に確認するために、その一部項目について行う試験。

4 種類 
化学混和剤の種類は、性能によって表1、塩化物イオン(Cl - )量によって表 2のとおり、それぞれ区分する。

表1_化学混和剤の性能による区分.jpg
表1 化学混和剤の性能による区分

表2_化学混和剤の塩化物イオン量による区分.jpg
表2 化学混和剤の塩化物イオン(Cl - )量による区分


5 品質
5.1 性能
化学混和剤の性能は、6.2 によって試験を行ったとき、表3に適合しなければならない。 (6.2 省略)

表 3-化学混和剤の性能
表3_化学混和剤の性能A.jpg


5.2 塩化物イオン (Cl - )量
塩化物イオン量は、6.3によってコンクリート中の量を求め、その値が表2に適合しなければならない。(6.3 省略)

5.3 全アルカリ量 
全アルカリ量は、6.4 によってコンクリート中の量を求め、その値が0.30kg/m 2 以下でなければならない。(6.4省略)

JIS A 6204 : 2011



(4) AE剤

AE剤は、コンクリート中に無数の独立した微細気泡を連行させることができる。この気泡は、コンクリートに次のような効果をもたらす。

?@ ワーカビリティーが良くなる(気泡のボールベアリング作用による。)。

?A 単位水量を減少させることができる(一般にプレーンコンクリートに比べて 8%程度減少できる。)。

?B コンクリートの凍結融解に対する抵抗性を増し、耐久性を向上させる。

?C 中性化に対する抵抗性を増大させる。

?D 圧縮強度は、空気量にほぼ反比例して低下する。


(5) AE減水剤

(?@) AE減水剤は性能に応じて、標準形、遅延形及び促進形に分けられる。その用途等は次のとおりである。

?@ 標準形は、主として一般のコンクリートに用いられる。

?A 遅延形は、コンクリートの凝結を遅らせ、暑中コンクリートやマスコンクリート等に用いる場合がある。

?B 促進形は.コンクリートの初期強度の発現を促進し、寒中コンクリート等に用いる場合がある。


(?A) AE減水剤は、セメント粒子に対する分散作用と空気連行作用を併有する混和剤で、所要のコンシステンシーを得るための単位水量は、プレーンコンクリー トに比べて 12〜16%減少できる。


(6)高性能AE減水剤

高性能AE減水剤は、高い減水性とスランプ保持性能を有する混和剤で、凝結時間が通常のコンクリートとあまり変わらない標準形と、暑中コンクリートやマスコンクリート等に適した遅延形とがある。

その主成分の化学的組成からナフタリン系、ポリカルボン酸系、メラミン系、アミノスルフォン酸系に分類される。ただし、この分類は、あくまで便宜的なもので、同系統に属していてもコンクリートに用いたときの性能は、主成分の化学構造が全く同じでないこと、配合されている副次成分の違いなどから必ずしも同ーではない。

高性能AE減水剤は、従来の AE剤や AE減水剤と同様にプラントでミキサーに投入し、他の材料と同時に練り混ぜる方式により、プレーンコンクリートに対し減水率を 16〜25 %程度にすることができる化学混和剤であり、特にスランプロス防止に重点をおいて開発されたものである。

高性能AE減水剤の主な機能は、?@高いセメント分散作用、?Aスランプ保持作用であり、用途としては次のようなものが挙げられる。

?@ 単位水量上限規制への対応
?A コンクリートの高耐久性化(単位水量の大幅低減)
?B 高流動コンクリートの製造
?C 高強度コンクリートの製造
?D 単位セメント量低減による水和熱の低減等


(7) 流動化剤

流動化剤は,あらかじめ練り混ぜられたコンクリートに添加、かくはんし流動性を増して、コンクリートの品質と施工性の改善をする混和剤である 。

なお、 I 類コンクリートであっても、レディーミクストコンクリート工場出荷後、荷卸し地点等で流動化剤を添加する場合は、JIS Q1001(適合性評価 日本工業規格への適合性の認証 一般認証指針)及びJIS Q1011(適合性評価 日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))の認証範囲から外れる可能性がある。 このような場合には、II 類コンクリートとして扱わなくてはならないので、その使用には注意が必要である。

(8) フライアッシュ

( i ) フライアッシュは、燃料として微粉炭を使用している火力発電所のボイラーの煙道に設けられた集塵機で回収される鉱物質の微粉で、人工ポゾランの一種である。 良質なフライアッシュは粒子表面が滑らかで球状を呈しているので、AE剤による気泡と同様な作用をする。

(ii) 良質なフライアッシュを混合すると同ースランプのコンクリートを得るのに、混合率(内割り)10%(質量比)当たり単位水量を3〜4%程度減らすことができる。

(iii) フライアッシュは JIS A 6201(コンクリー ト用フライアッシュ)の I 種、II 種 又は?W種に適合するものとし、ワーカビリティーや圧送性の改善、プリーディングの減少、水和熱の抑制等の目的で、セメントの一部として(内割り)あるいば骨材の一部として(外割り)用いられる(内割り、外割りについては(vi)参照)。フライアッシュの品質を表6.3.7 に示す。

表6.3.7_フライアッシュの品質(JISA6201).jpg
表6.3. 7 フライアッシュの品質 (JIS A 6201 : 2008)


(iv) フライアッシュを内割りに混合する場合の混合率の限度は、セメント量の10%以内とする。


(v) フライアッシュの混合によりコンクリー トの中性化が促進されるといわれているので鉄筋に対するコンクリー トのかぶり厚さを確保するよう特に注意する。


(vi) フライアッシュ の混合の内割り、外割り

?@フライアッシュを「内割りに混合する」とは図6.3.6 のような割合に混合することをいう。「標仕」6.3.2(2)(vi)?Bの場合に適用する。

図6.3.6_フライアッシュの混合の内割り.jpg
図6.3.6 フライアッシュの混合の内割り

?Aフライアッシュを「外割りに混合する」とは図 6.3.7 のような割合に混合することをいう。「標仕」6.3.2(2)(vi)?Aの場合に適用する。

図6.3.7_フライアッシュの混合の外割り.jpg
図6.3.7 フライアッシュの混合の外割り


6.3.2 コンクリートの調合

コンクリートの計画調合は、所要のスランプ、空気量、強度及び耐久性が得られ、かつ、「標仕」2節に示される各規定の要求事項を満足するよう、次の項目に注意して定めなければならない。

(1) 調合管理強度及び調合強度

(i) 調合管理強度

平成19年版「標仕」では、調合管理強度(Fm)に相当する値は、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(△F= 3 N/mm 2 )、気温によるコンクリート強度の補正値(T)を考慮して(Fc+△F+T)としていたが、平成22年版「標仕」からは、調合管理強度は、(△F+ T)に代わって、セメントの種類及びコンクリートの打込みから材齢28日までの予想平均気温に応じて定められた構造体強度補正値(S)を取り入れ(Fc+S)に改められている。


(?A) 構造体強度補正値(S) はセメントの種類、予想平均気温の範囲に応じて「標仕」表6.3.2に示すように、3N/mm 2 、6N/mm 2 としている。

なお、構造体コンクリートの強度については 6.2.2(c)を参照するとよい。


(?B) 調合強度(F)は、一般的には標準養生した供試体の材齢 m 日における圧縮強度で表し、6.3.3式を満足するように定めることになる。

 F ≧ Fm + α × σ ( N/mm 2 ) ・・・(6.3.3 式)

 α:はコンクリートの許容不良率に応じた正規偏差
 σ:強度のばらつきを表す標準偏差

JASS5 では、αを許容不良率 4%に相当する 1.73 を用いている。また、σは発注するレディーミクストコンクリート工場の実績に基づいた値を用いればよい。もし発注するコンクリートの生産実績が少ないなどの場合には、2.5 N/mm 2 又は 0.1 Fm の大きい方の値を用いる。




(2)調合条件

コンクリートに要求される品質として、所要の強度を確保すること、打込み時のワーカビリティーを確保することは当然であるが、近年、鉄筋コンクリート造の構追物が劣化している様々な事例が指摘されており、コンクリートの耐久性(コンクリート中の塩化物含有量、中性化、ひび割れ、海塩粒子、アルカリ骨材反応による影響等に対して)を確保することがコンクリート構造物の継続的利用に極めて重要となっている。 これらの理由から「標仕」では次の規定を設けている。

なお、次にいう水セメント比の最大値、単位水量の最大値及び単位セメント量の最小値とは、レディーミクストコンクリート工場において調合設計を計画した時のそれぞれの目標値のことである。

?@ 「標仕」では. 荷卸し地点における空気量 は、4.5%と規定されている。

AE剤、AE減水剤、高性能AE減水剤を用いて、コンクリート中に微細な空気泡を連行すると、連行空気量にほぼ比例して所定のスランプを得るのに必要な単位水量を低減でき、ワーカビリティーが改善されるとともに、凍結融解作用に対する抵抗性が増大する。しかし、空気量が 6 %以上になるとそれ以上空気量を増やしてもフレッシュコンクリートの品質は改善されなくなり、空気量が 3%未満では凍結融解作用に対する抵抗性の改善に対する効果が少ない。 このため空気量の確認時期・地点を荷卸し地点とし、その時のコンクリートの空気量を 4.5%としている。


?A 水セメント比の最大値(上限値) は、平成22年版「標仕」では、普通ポルトランドセメント及び混合セメントの A種は 65%、混合セメントのB種は60%とされていたが、平成25年版「標仕」では新たに早強ポルトランドセメント及び中庸熱ポルトランドセメントを使用する場合は65%、 低熱ポルトランドセメントを使用する場合は60%とする規定が追加されている。

鉄筋コンクリートの一般的な劣化は、コンクリート表面からの水・炭酸ガス・塩化物その他の浸入性物質によりもたらされるが、これらの劣化要因からコンクリートを健全に守るためには、一般に水セメント比を小さくすればよい。このため強度上必要な水セメント比とは別にコンクリートのワーカビリティー・均一性・耐久性を確保するために水セメント比の最大値を定めている。


?B 「標仕」では、 単位水量の最大値を185kg/m 3 と規定するとともに、コンクリートの強度気乾単位容積質量、ワーカビリティー、スランプ及び構造体コンクリートの仕上り状態が「標仕」2節に規定される品質を満足する範囲でできるだけ小さくするよう規定されている。

近年、良好な砂利、砂に代わり砕石、砕砂が多用されるようになると、スランプを一定値以下に抑えても単位水量は大きくなる一方であり、コンクリートの乾燥収縮率の増大が懸念されている。その一方で、最近は高性能AE減水剤によりコンクリートのスランプを比較的容易に変えることができるようになり、単位水量が 185kg/m 3 以下でもスランプ 18cmにすることが容易となっている。このような理由から、コンクリートの品質を確保するためにスランプの規制以外に単位水量の制限が設けられている。


?C 「標仕」では、 単位セメント量の最小値を 270kg/m 3 と規定するとともに、?Aの水セメント比及び?Bの単位水量から算出した数値以上と規定されている。

なお、単位セメント量は、6.3.4式によって求められる。


C =W / x ×100 ・・・・・・(6.3.4式)

C:単位セメント量 (kg/m 3 )
W:単位水量  (kg/m 3 )
x:水セメント比  ( %)

単位セメント量は水和熱及び乾燥収縮によるひび割れを防止する観点からできるだけ少なくすることが望ましい。しかし、単位セメント量が過小であるとコンクリートのワーカビリティーが悪くなり型枠内へのコンクリートの充填性の低下、豆板や巣、打継ぎ部における不具合の発生、水密性、耐久性の低下等を招きやすい。 このためコンクリートの強度を確保するための条件とは別に単位セメント量の最小値が規定されている。


?D 細骨材率

「標仕」 では、「 2節に規定するコンクリートの品質が得られる範囲内でできるだけ小さくする 」と規定されている。 細骨材率を小さくすると一般に所要のスランプを得るための単位水量は減るが、がさがさのコンクリートとなり、また、スランプの大きいコンクリートでは、粗骨材とモルタルとが分離しやすくなり、ワーカビリティーが低下する。

一方.細骨材率を大きくすると所要のスランプを得るための単位水量を多く必要とし、流動性の悪いコンクリートとなる。このため、レディーミクストコンクリート工場では、所要のワーカビリティーが得られる範囲内で単位水量が最小になるように試験により最適な細骨材率を定めている。




?E 混和材料

1) 混和剤の使用量

AE剤については、所定の空気量が得られるようにその使用量を定める。

AE減水剤については、セメントに対する定められた質量比等の範囲内で使用量を定め、空気量については、空気量調整剤 (AE剤)で所定の空気量が得られるように調整する。

高性能AE減水剤については、セメントに対する定められた質量比等の範囲内で単位水量及びスランプが得られるように使用量を定める。また、空気量については、空気量調整剤(AE剤)で所定の空気量が得られるように調整する。



2)良質なフライアッシュは球形をしており、ボールベアリング効果により、ポンプの圧送性を改善する。普通ポルトランドセメントを用いたコンクリートで圧送が困難な場合、フライアッシュ?U種又は?W種を外割りで混合することができる( 6.3.1(d)(8)(?E) 参照)。

なお、フライアッシュの種類については、平成22年版「標仕」までは、I種又は?U種であったが、平成 25年版「標仕」では、?U種又は ?W種に変更されているので、フライアッシュの混合使用が行われる場合には、受注者等に調合計画表等を提出させて確認するとよい。



3) 普通ポルトランドセメントを用いたコンクリートで水セメント比の制限等により、強度上必要なセメント量を超える場合は、その部分をセメント全量の10%(質量比)の範囲でフライアッシュ?T種又は?U種に置き換えることにより、単位水量の低下、単位セメント量の低下等が図られ、乾燥収縮等を改善することができる (6.3.1(d)(8)(?E) ? 参照)。

また、「標仕」 では記載されていないが、高炉スラグ微粉末を適量混合することにより、水和熱の抑制、アルカリ骨材反応の抑制、硫酸塩や海水に対する化学抵抗性の向上、水密性の向上等が期待できる。

なお、普通ポルトランドセメントと置換できるフライアッシュの種類については、平成22年版「標仕」までは?U種だけであったが、平成25年版「標仕」では、新たに I種も追加されている。


4) 上記 1)〜3)以外で混和材料として多く用いられるものには流動化剤、膨張材、防錆剤等があるがその使用方法使用量についてはコンクリートの種類や使用目的によって異なるので、使用が特記された場合は、コンクリートの所定の性能が得られるよう試し線り及び信頼できる資料を受注者等に提出させて確認することが重要である。



?F 塩化物量

コンクリートは、通常pH=12.5〜13程度の強アルカリ性を呈し、その中に埋め込まれた鉄筋の表面は薄い酸化皮膜で覆われ、不働態化して腐食から保設されている。

しかし、大気中の炭醗ガスやその他の酸性物質の浸透によって徐々にアルカリ性が失われ、中性化が鉄筋の位置まで進行すると鉄筋の腐食に対する保澁作用を失い、更に、水分と酸索が供給されると鉄筋は腐食し始める。

コンクリート中に一定量以上の塩化物が存在すると、塩化物イオンの作用によってコンクリートの中性化が進行していなくても、不働態皮膜が破壊され、鉄筋は腐食し始める。

これらの理由から、「標仕」ではコンクリートに含まれる塩化物の値に制限が設けられ、塩化物イオン量で 0.30kg/m 3 以下と規定されている。

なお、塩化物イオン量が0.30kg/m 3 を超えることがやむを得ないと判断した場合は、設計担当者と打合せのうえ、受注者等に次の基準に従った処置の方法を提案させ、「標仕」1.1.8 による協議に基づいて処置する必要がある。

1) コンクリート中に含まれる塩化物含有量の基準

鉄筋コンクリート造等建築物の構造耐力上主要な部分に用いられるコンクリートに含まれる 塩化物量(塩化物イオン(Cl-)換算)は、原則として 0.30 kg/m 3 以下 とし、やむを得ず塩化物量が 0.30 kg/m 3 を超え 0.60 kg/m 3 以下のコンクリートを使用する場合は、次のイ)からニ)までの条件を満たすものとする。

イ)水セメント比は、55%以下とする。

ロ)AE減水剤又は高性能AE減水剤を使用し、スランプは 18cm以下(流動化コンクリートではベースコンクリートのスランプは15cm以下、流動化後のコンクリートのスランプは21cm以下) とする。

ハ)適切な防錆剤を使用する。

ニ)スラブの下端の鉄筋のかぶり厚さを3cm以上とする。


2)離島等で海砂以外の骨材の入手及び除塩用水の確保が落しく困難であり、塩化物量が 0.60kg/m 3 3を超える場合においては、有効な防錆処理が施された鉄筋の使用等による防錆対策を講ずる。


3) 塩化物量の測定は、「標仕」表6.9.1による。



?G アルカリ骨材反応

1) アルカリ骨材反応とは、反応性シリカを含む骨材とセメント等に含まれる Na + 、K + のアルカリ金属イオンが、水の存在下で反応してアルカリけい酸塩を生成し、これが膨張してコンクリートにひび割れ、ポップアウト等を生じさせる現象をいう。

2) アルカリ骨材反応は、この反応にかかわる鉱物の種類によって、アルカリシリカ反応とアルカリ炭酸塩反応とがあり、わが国で問題となっているのは主としてアルカリシリカ反応である。

3) この反応性をもつ鉱物としてはオパール、クリストバライト、トリジマイト、火山ガラス、玉髄、石英等があり、反応性シリカ鉱物を含む岩石としては輝石安山岩、チャート等がある。

4)アルカリ骨材反応は、一般に?@反応性骨材、?A高いアルカリ量、?B十分な湿度の 3条件がそろった場合にコンクリートに被害を生じさせるとされている。

5) アルカリ骨材反応の抑制対策 として 次のような方法が考えられる。

イ)反応性の骨材を使用しない。

ロ)コンクリート中のアルカリ総量を低減する。

ハ)アルカリ骨材反応に対して抑制効果のある混合セメントを使用する。


6) 以上のことから、「標仕」ではコンクリートはアルカリ骨材反応を生じるおそれのないものとしている。


?H 計画調合の決定

1) 計画調合は、試し練りによってそのコンクリートの性能を確認して定めることを原則としているが、I 類コンクリートを使用する場合は、試し練りは、省略してもよいとしている。


2) 試し練りにおいて、計画スランプ、計画空気量、調合強度(標準養生した材齢28日の圧縮強度 )、その他コンクリートの温度や塩化物量、単位容積質量等を確認する。

なお、試し錬りの計画スランプ、計画空気量については、レディーミクストコンクリートの練混ぜから荷卸し地点までのロスを考慮した目標値であることに注意する。

また、運搬によるスランプロスや空気量ロスは、練混ぜから荷卸し地点までの距離、コンクリートのスランプ、外気温、調合条件等によって相違があるので、レディーミクストコンクリート工場の社内規格を参考にするとよい。


3) 計画調合の表し方

コンクリートの計画調合は、JIS A 5308(レディーミクストコンクリート)の表8[レディーミクストコンクリート配合計画書]により表す。


4) レディーミクストコンクリート工場では I類コンクリートについては、使用する材料で調合設計を標準化している。レディーミクストコンクリート工場における計画調合の定め方の一例を図6.3.8 に示す。


図6.3.8_レディーミクストコンクリート工場における計画調合の求め方の例.jpg
図 6.3.8 レディーミクストコンクリート工場における計画調合の求め方の例


6章 コンクリート工事 4節 発注、製造及び運搬

第6章 コンクリート工事


4 節 レディーミクストコンクリートの発注、製造及び運搬


6.4.1 レディーミクストコンクリート製造工場の選定

(a) 工事開始前に、「標仕」 で規定されている所定の品質が得られるように工事現場周辺のレディーミクストコンクリート工場を調壺して (b)から( f )の事項に適合するものであることを確認する。


(b) レディーミクストコンクリートの製造者の業界では、一般に地域ごとの協同組合による共同販光方式又は直接販売方式が取られ、協同組合から割り当てられた一工場又は複数の工場から工事現場にコンクリートが供給されるようになっている。このような供給方式の場合、同一打込み工区に同時に複数の工場よりコンクリートが供給されるとそれぞれの工場の品質責任の所在を明確化することが困難となるので、同一打込み工区への複数工場からの供給が行われないようにする。 複数工場による協同納入を避けることができない場合は、打込み区画を区分し、それぞれの納入工場に振り分けて、貢任の所在を明確にすることが重要である。


(c) レディーミクストコンクリートは、運搬時間によって品質が変化することもあるので、運搬時間はなるべく短い方がよい。したがって、JIS A 5308(レディーミクストコンクリート)の 8.4[運搬]及び「標仕」 6.6.2 で定められた時間の限度内にコンクリートが打ち込めるよう、工事現場内の運搬方法及び運搬時間並びに工場の製造能力、運搬能力等を考慮した工場であることを確認することが重要である。


(d) レディーミクストコンクリートの品質は、工場の技術者の技術水準に左右される。

「標仕」6 .4.1 (1)及び (2)でいう施工管理技術者とは、(公社)日本コンクリート工学会がコンクリートに関して豊富な知識と優れた技術水準を有する者と認定したコンクリート主任技士、コンクリート技士若しくはコンクリート診断士又は一級建築施工管理技士、ー級建築士等が該当する。また、レディーミクストコンクリート工場の選定は監督職員の承諾事項(「標仕」6.4.1)とされているので、承諾に当たっては品質確保及び資格運用等を適切に行っている工場であることを確認する必要がある。

レディーミクストコンクリート工場の品質管理状況に関しては、産・学・官で構成される「全国生コンクリート品質管理監査会議」が JIS Q1011(適合性評価 日本工業規格への適合性の認証 分野別認証指針(レディーミクストコンクリート))の規定に、ISO 9001(品質マネジメントシステムー 要求事項) の一部規定及び管理技術者の有無等の要求事項を加えた「全国統一品質管理監査基準」を策定し、毎年各工場の立入監査を行い、この基準に適合した工場に○適マークを交付しているので、工場の選定に必要な品質確保の確認には、これらの結果を参考にするとよい(6.5.1(a)参照)。


(e) JIS マーク表示認証工場の中には、表6.2.1よりも狭い範囲の組合せで JISマーク表示の認証を受けている場合もあるので、JISマーク表示認証製品の範囲を確認する必要がある。


(f) JIS マーク表示認証工場が工事現場近くにない場合は、JIS A 5308 の規定とJIS Q 1011を参考にして、その工場の製品規格、使用材料、製造工程管理・設備、製品の品買管理状態等を調査し、「標仕」 2節に規定される品質のコンクリートが製造できると認められる工場であることを確認する必要がある。


6.4.2 レディーミクストコンクリートの発注


(a) I類コンクリートの発注に当たっては、表 6.2.1 に示す「レディーミクストコンクリートの種類」からコンクリートの種類、粗骨材の最大寸法、スランプ及び呼び強度の組合せを指定させるほか、表6.4.1 に示す a)から d)の事項とともに、必要に応じて e)から q)の事項を生産者と協談のうえ、指定させる。ただし、a) から h) については、JIS A 5308で規定している範囲とする。



表 6.4.l 指定及び協議事項 (JIS A 5308:201I)
a ) セメントの種類

b ) 骨材の種類

c ) 粗骨材の最大寸法

d ) アルカリシリカ反応抑制対策の方法

e ) 骨材のアルカリシリカ反応性による区分

f ) 呼ぴ強度が36を超える場合は、水の区分

g ) 混和材料の種類及び使用量

h ) 品質の項で定める塩化物含有量の上限値と異なる場合はその上限値

i ) 呼ぴ強度を保証する材齢

J ) 品質の項で定める空気量と異なる場合は、その値

k ) 軽量コンクリートの場合は、軽量コンクリートの単位容積質量

1 ) コンクリートの最高又は最低温度

m ) 水セメント比の目標値の上限

n ) 単位水量の目標値の上限

o ) 単位セメント量の目標値下限又は目標値の上限

p ) 流動化コンクリートの場合は、流動化する前のレィデーミクストコンクリートからのスランプの増大量

q ) その他必要な事項


(b) ?U類 コンクリートの発注に当たっても、I類コンクリートと同様に必要項目を生産者と協議のうえ、指定させる。


(c) 錬混ぜ水としてスラッジ水を使用する場合は、スラッジ固形分率(レディーミクストコンクリートの配合における、単位セメント量に対するスラッジ固形分の質量の割合)が 3%を超えないように目標スラッジ固形分率が設定され、パッチ濃度調整方法又は連続濃度測定方法でスラッジ固形分率が適切に管理されていることを受注者等に確認させ、その結果を報告させることが重要である。

なお、スラッジ固形分率を 1%未満で使用する場合、生産者が、JIS A 5308 の表8[レディーミクストコンクリート配合計画書 ]の目標スラッジ固形分率の欄に、”1 %未満”と記載する。また、この場合、生産者が練混ぜ水の全量にスラッジ水を使用し、かつ.濃度の管理期間ごとに1 %未満となるよう適切に管理されていることを受注者等に確認させ、その結果を報告させることが重要である。


(d) 呼び強度は、呼び強度の強度値が調合管理強度(設計基準強度(Fc)+構造体強度補正値(S))以上で、かつ、コンクリートの種類に応じた単位セメント量の最小又は最大値、水セメント比の上限値を満足するよう指定させる。


(e)施工に先立ち、レディーミクストコンクリート工場の配合計画書とともに、製造に用いる材料、調合設計の基礎となる資料及び計算書等を受注者等から提出させ、検討、確認する必要がある。

なお、レディーミクストコンクリート工場は、調合設計の基礎となる資料として、水セメント比と圧縮強度の関係式、呼び強度ごとの標準偏差、単位水量・水セメント比・スランプの関係、単位粗骨材かさ容積・水セメント比・スランプの関係、気温・運搬時間・スランプロス・空気量ロスとの関係、使用材料の変動による調合修正の方法 、コンクリートの練混ぜ量・練混ぜ時間との関係等コンクリートの調合、製造の基本となるデータ類を保有しているので必要に応じてこれらの内から当該現場で問題となりそうな項目に関する資料を提出させるとよい。


6.4.3 運 搬

(a) JIS A5308 の 8.4[運搬]では、運搬時間は、生産者が練混ぜを開始してから運搬車が荷卸し地点に到着するまでの時間とし、その時間は、1.5時間以内としている。ただし、購入者(受注者等)と生産者とが協談のうえ、運搬時間の限度を変更することができることになっている。一方、「標仕」 6.6.2 では.コンクリートの練混ぜから打込み終了までの時間の限度は、厳しくなる場合もある。コンクリートの運搬に当たっては、これらの二つの規定を満足するように適切な施工計画を立てさせる。

(b) トラックアジテータからコンクリートの荷卸しを行うに際してはその直前にトラックアジテータを高速回転させ、ミキサー内のコンクリートを均ーにしたのち、コンクリートを排出する。 特に運搬距離が長い場合には、高速回転させる時間を少し長くするとよい。

なお、市街地でのトラックアジテータの高速回転は騒音の問題が発生するので、工事開始前に住民の理解を得ておく必要がある。



6章 コンクリート工事 5節 普通コンクリートの品質管理

第6章 コンクリート工事


5 節 普通コンクリートの品質管理

6.5.1 一般事項

(a) 「標仕」 6.5.1 では、打ち込まれるコンクリートが所定の品質を有していることを確認するために受入れ時に受注者等が実施する品質管理について規定している。したがって、この節においては、受注者等を主体として記述している。

(1) 間違ったコンクリートの納入や誤配車を排除するために、レディーミクストコンクリートの受入れ時には、荷卸しされるコンクリートの種類、呼び強度、指定スランプ、粗骨材の最大寸法、セメントの種類及び容積が発注した条件に適合していることを各運搬車の納入書によって確認することが必要である。

(2) レディーミクストコンクリートでは、荷卸し時までの品質については生産者が責任をもち、それ以後の品質については購入者(受注者等)の責任となる。 したがって工事現場に荷卸しされるコンクリートの品質が所定の品質を有していることを常に確認し、異状が認められたコンクリートは受取りを拒否し、持ち帰らせる必要がある。

レディーミクストコンクリートの受入れ時に判定できる品質は、スランプ、空気量、単位容積質量、温度及び塩化物イオン量等である。

(3) 所要のコンクリート性能を確保するためには単位水量の管理が極めて重要である。打込み中に、粗骨材とモルタルの分離やスランプ、空気量の大幅な変動等、 コンクリートの品質に変化が見られた場合は直ちにコンクリートの打込みを停止し、コンクリート工場の製造管理記録に記載されている単位水量の値が「標仕」6.4.2(f)に規定される配合計画書の数値に計量誤差の数値を加味した値に対して所定の範囲内であることを確認する必要がある。

なお、ここでいう配合計画書とは、JIS A 5308(レディーミクストコンクリート)の表8 に規定されるレディーミクストコンクリート配合計画書をいう。

平成 22年 4月 1日からは、JIS A5308 のレディーミクストコンクリート納入書の標準様式が変更され、配合表も併記されている。この配合表には、標準配合、修正標準配合、計量読取記録から算出した単位量、計量印字記録から算出した単位量若しくは計量印字記録から自動算出した単位量のいずれかが記載されている。また、購入者から要求があった場合に生産者はレディーミクストコンクリートの納入後にバッチごとの計量記録及びこれから算出した単位量を提出しなければならないことになっている。

なお、配合計画書の値とコンクリート工場の製造管理記録の値とがほぼ同じ( ± 1%程度)であるにもかかわらずコンクリートの品質に変化が認められる場合は、次の方法等を参考にして、実際に当該コンクリートの単位水量を測定するとともに、レディーミクストコンクリート工場と原因を調査し、改善を行うことが必要である。

平成15年11月に国土交通省大臣官房官庁営繕部より「レディーミクストコンクリートの品質確保について」(平成15 年11月10 日 国営建第95号)(以下、この項では「室長通知」 という。) 及び「「レディーミクストコンクリートの品質確保について」の運用について」(平成15 年11月10日 国営技第71号)(以下、この項では「室長通知」という。)が国土交通省各地方整備局、北海道開発局及び沖縄総合事務局に通知され、延床面積1,500m 2 程度以上の新築工事(土木では1日当たりコンクリートの使用量が 100m 2 以上施工する工事) における単位水量の管理方法が示されている。室長通知は、表6.5.1 に示すように、「管理目標値」を「設計単位水量」 ±15 kg/m 3 とし、「検査時単位水量」 がこの範囲内に収まるように「計量単位水量」を設定しており、この「管理目標値」を超え、「検査時単位水量」 が「設計単位水量」 土 20kg/m 3 の範囲内では試験頻度を運搬車 3台に 1回の割合に増やし、更にこれを超える場合にはコンクリートの打込みを停止するよう定めている。

測定方法については、平成 16 年 3月に土木を対象に「レディーミクストコンクリート単位水量測定要領(案)」(以下、この項では「要領 (案)」という。)が国土交通省大臣官房技術調査課より各地方整備局等に送付されている。「標仕」では製造管理記録による管理方法を規定しているが、これら管理方法によって支障が生じた場合又は生じるおそれがある場合には、上記国土交通省の通知等を参考に管理するとよい。

要領(案)では、使用する測定方法としてエアーメータ法かこれと同程度の精度を有する測定方法としている。 (一社)日本建築学会「鉄筋コンクリート造建築物の品質管理および維持管理のための試験方法」にエアーメータ法のほか、高周波加熱乾燥法等、代表的な試験方法が提案されているので参考にするとよい 。ただし、試験の精度や測定に要する時間、必要な設備等生産者や管理者、工事監理者により試験に要求する性能が異なるため、現場の実施形態に合わせた方法を選定することが重要である。上記の各試験方法は、単位水量の変動追従性が最も大きいものでも±10kg/m 3 以下であり、十分な知識と技術を有する作業者が従事し、使用機器等の校正が適切になされれば、おおむね良好な精度で単位水量を推定することが可能である。 試験作業者については、現在、関東や関西を中心に性能評価機関による単位水量の推定試験に従事する作業者への講習会(単位水量及び塩化物量の測定実務講習会:(一財)建材試験センター)や認定制度(コンクリート現場試験技能者認定制度:(一財)日本建築総合試験所)が進んでおり、これらを参考にするとよい。

表6.5.1 単位水量の管理目標値と、設計値(設計単位水量)の関係及び管理運用方法
表6.5.1 単位水量の管理目標値と、設計値(設計単位水量)の関係及び管理運用方法.jpg


課長通知を次に示す 。
レディーミクストコンクリートの品質確保について
              (平成15 年11月10日 国営建第95号)

建築構造物に使用されるレディーミクストコンクリートの品質確保については.従来より配慮されておるところであるが、なお一層のレディーミクストコンクリートの品質確保を図る観点から、下記の対策を実施するよう通知する。

【 記 】

1. 一定規模以上の工事について、「公共建築工事標準仕様書 (建築工事編)」(以下、「標準仕様書」という。)の品質管理基準に加えて、コンクリートの単位水量の測定を実施する。

2. コンクリート施工時のワーカビリティーの経時変化を考慮に人れた、適切なスランプ管理を行わせる。

3. コンクリート製造工場の選定においては、公共建築工事標準仕様書(建築工事編)6.4.1によることとし、品質確保、資格運用を適切に行っている工場から選定する。



室長通知の抜粋を次に示す。
「レディーミクストコンクリートの品質確保について」 の運用について
(平成15年11月10日 国営技第71号)

「レディーミクストコンクリートの品質確保について」(平成15 年11月10 日付け国営建第95号)(以下、「課長通知」という。)の運用について定めたので、下記の通り取り扱われたい。

【 記 】

1. 課長通知1.で定めるコンクリートの単位水量の測定は、当面の間、試行工事として延床面積1,500m 2 程度以上新築工事で実施するものとし、その実施要領(案)は次によるものとする。

(1) 施工者に単位水量を含む正確な計画調合書の確認をさせるものとする。

(2) 単位水量の測定は、150m 2 に1回以上及び荷卸し時に品質の異常が認められた時に実施する。

(3) 単位水量の上限値は、「公共建築工事標準仕様書(建築工事編)」(以下、「標準仕様書」という。) 6.2.4 (1)による。

(4) 単位水量の管理目標値は次の通りとして、施工する。(ただし、測定装置の精度や試験の熟練度の向上に伴い、管理目標値を厳しく定めることができる。)

1) 測定した単位水量が、計画調合書の設計値( 以下、「設計値」 という。)±15kg/m 3 の範囲にある場合はそのまま施工する。

2) 測定した単位水量が、設計値 ±15を超え ±20kg/m 3 の範囲にある場合は、水量変動の原因を調査するとともに生コン製造者に改善を指示し、その運搬車の生コンは打設する。その後、設計値 ±15kg/m 3 以内で安定するまで.運搬車の3台毎に 1回、単位水量の測定を行う。

3) 設計値 ±20kg/m 3 を超える場合は、生コンを打込まずに持ち帰らせ、水量変動の原因を調査するとともに生コン製造者に改善を指示しなければならない。その後の全運搬車の測定を行い、設計値 ±20kg/m 3 以内であることを確認する 。 更に、設計値 ±15kg/m 3 以内で安定するまで、運搬車の 3台毎に1回、単位水量の測定を行う。

4) 3) の不合格生コンを確実に持ち帰ったことを確認すること。

打設 ≦(管理目標値 = 設計値±15 ) < 改善指示 ≦(指示値=設計値±20 ) < 持ち帰り
(表6.5.1と同じ)

(5) 単位水量管理についての記録を書面(計画調合書、製造管理記録、打込み時の外気温、コンクリート温度等)と写真により提出させる。

(6) 測定結果を、計画調合書等とともに本省へ報告すること。



2. コンクリートのスランプ管理

(1) スランプ管理は、「標準仕様書」6章5節及び10節の規定により適切に実施する。

公共建築工事標準仕様書
6.5.2 スランプ
(1) コンクリートのスランプの許容差は、表6.5.1による。

(2)スランプが許容値を超えた場合は、調合の調整、運搬方法の改善を行う。ただし、調合調整に当たり、水セメント比を変えてはならない。
表6.5.2_スランプ.jpg

(2) コンクリートの工事現場内連搬は、「標準仕様書」6節の規定により適切に実施する。



3 コンクリート製造工場の選定

(1) レディーミクストコンクリート工場の選定においては、「標準仕様書」6.4.1(コンクリート製造工場の選定)によること、かつ、配合設計及び品質管理等を適切に実施できる工場(全国品質管理監査会議の策定した統一監査基準に基づく監査に合格した工場等)から選定することを基本とする。


(4) フレッシュ時のコンクリートのワーカビリティーが安定していて状態が良いことを目視で確認することとし、その確認時期を打込み当初と打込み中、随時行うことを定めている。 ワーカビリティーについては、スランプ試験後のコンクリートを目視で観察し、粗骨材が分離していないことを確認するとともに必要に応じてスランプフローを測定するのがよい。また、試験結果は写真等で記録することが重要である。

(5) I 類コンクリートを使用する場合には、受注者等が実施する品質管理の試験結果とともに、生産者が行うJIS A5308の品質管理の試験結果が、JIS Q1011(適合性評価 日本工業規格への適合性の認証 分野別認証指針(レディーミクストコンクリート))に基づいて行われているかを確認し、監督職員に提出することとしている。

なお、生産者が行う試験結果の報告があっても、受注者等が実施する検査は省略することはできない。

(6) JIS マーク表示認証製品に相当する I 類コンクリートにおいては、使用する材料から製品の品質に至るまでの品質管理を JIS Q 1001(適合性評価 日本工業規格への適合性の認証 一般認証指針) 及び JIS Q 1011に基づいて実施している。しかし、II 類コンクリートについては必ずしも I 類コンクリートと同様に管理されているとは限らない。そこで、II 類コンクリートを使用する場合には、次の方法で品質管理を行う必要がある。

II 類コンクリートに使用する材料が、I 類コンクリートの製造に用いているものと同ーである場合には、I 類コンクリートのための材料検査結果を用いることができるが、 I 類コンクリートに用いているものと異なる材料を使用している場合には、I 類コンクリートに用いる材料と同様の品質管理検査を行い、その結果がJIS Q1011の評価基準及び JIS A 5308 の品質基準若しくは「標仕」 6.4.2 のレディーミクストコンクリートの発注時に指定した評価基準及び品質基準等に適合していることを確認することが必要である。また、納入前に必ず試し練りを行い、 所要の品質が得られることを確認してから使用するとともに、使用する材料及びコンクリートについての検査は、I 類コンクリートと同様 JIS Q 1011に規定されている方法(試験を行う時期を含む。)に準じて行い、その結果により所要の品質が得られていることを確認して、その検査結果の報告を監督職員に提出することが必要である。更に、納入されたコンクリートの受入れ検査についてもJIS A5308に規定されている方法に従って実施し、その品質管理の結果の報告を監督職貝に提出することが 必要である。

(b) 型枠中に打ち込まれた構造体コンクリートが所要の品質を確保するためには、適度な温度と水分の確保が必要であり、その具体的養生方法を「標仕」6章7節で規定している。養生方法が適切でない場合には、コンクリートが本来有している強度の 60%程度しか得られない場合もあるので、「標仕」に基づき適切な養生を行わなければならない。

なお、平成22年版「標仕」では、JASS5 の2009年改定における養生方法に整合させるため、使用するセメントの種類及び養生方法に より養生期間が大幅に変更されているので、「標仕」及び本6章 7節をよく確認し、これらに記載さ れている方法で行わなければならない。

(c) スランプ及び空気量が「標仕」 6.5.2 及び「標仕」 6.5.3 に示される所定の許容差を超えた場合又は調合管理強度が「標仕」 6.3.2 に示される所定の値を下回った場合には、調合の調整を行うことが必要になる。調合の調整が必要になる場合の条件並びに調整の方法については「標仕」6.5.2.「標仕」6.5.3及び「標仕」6.5.5 に従って実施する。

(d) フレッシュコンクリートの試験を行う場合には、「標仕」6.9.2 に示されている方法で行わなければならない。




6.5.2 スランプ

打ち込まれるコンクリートのスランプが「標仕」表6.5.1 に示す許容差 (18cmを超える場合の許容差が ±2cmとなる条件は、平成 22年版「標仕」から、高性能AE減水剤を使用し、かつ、調合管理強度が 27N/mm 2 以上である場合に変更されている。)を超えた場合に、そのままコンクリートを打ち込むと充填不良や不均ーなコンクリートとなる場合がある。 このような場合には調合の調整や運搬(レディーミスクトコンクリート工場から荷卸し地点までの運搬及び荷卸し地点から打込み地点までの場内運搬)方法の改善を行うことが必要である。調合の調整を行う場合には、その原因を明らかにするとともに、所要の強度を確保するため水セメント比を変更しない方法で行わなければならない。

(1) スランプの変動要因としては、次のような項目が挙げられ、要因によっては調合の調整でなく、要因の変動を小さくすることが必要な場合もある。

( i) 骨材の粒度(特に細骨材の粒度分布)及び粒形
(ii) 表面水の変動
(iii) 材料の計量誤差
(iv) 運搬(レディーミスクトコンクリート工場から荷卸し地点までの運搬)時間
(v) 空気量


(2) スランプを調整する場合のおおよその目安は、次のとおりである 。

(i) 水セメント比を変えないで、スランプを1cm増加させるためには、単位水量を 1. 2%(質量比)増加させる。

(ii) 水セメント比及び単位水量を変えないで、スランプを1cm増加させるためには、細骨材率を0.5%減少させる。





6.5.3 空気量

(a) 荷卸し時の空気量の許容差は、JIS A5308(レディーミスクトコンクリート)の品質基準と同様に ±1.5%である。

(b) 荷卸し時の空気量の測定結果が「標仕」6.4.2 で発注したときの空気量 ±1.5% の範囲を超えた場合には、補助 AE剤の使用量と連行される空気量がほぼ比例関係にあるので、この関係を利用して、水セメント比を変えずに補助AE剤の使用量を増減して所定の空気量の範囲に入るように調整するとよい。空気量が許容範囲を超える原因としては、骨材の品質変動による場合が多いと考えられるが、その原因を明らかにし、以後このような原因が生じないような処置を取ることが大切である。

なお、JIS A1128(フレッシュコンクリートの空気量の圧力による試験方法 空気室圧力方法)による空気室圧力法で測定する場合には、骨材中の空気量(骨材修正係数)をあらかじめ測定しておき、適切に補正しなければならない。 従来、普通の骨材を用いた場合の骨材修正係数は 0.1%程度以下となることが多く、この補正を省略することが多かったが、近年では骨材資源の枯渇化とともに、普通の骨材でも骨材修正係数が 0.2%を超えるものもあるため、試し錬り時等、事前にこれらの数値を確認しておくことが必要である。




6.5.4 塩化物量及びアルカリ総量

(a) 塩化物量

(1) 塩化物量試験は、「標仕」表 6.9.1 によって実施する。塩化物量(塩化物イオン(Cl-) 量換算)の測定結果が0.30kg/m 3 を超えるとコンクリート中の鉄筋の腐食が促進される可能性があるため、この値以下とすることが定められている。コンクリート中の塩化物イオン量は、使用する材料から供給される塩化物イオン量の合計として表され、レディーミクストコンクリート工場では各調合ごとにその値を計算して求めている。 測定結果が 0.30kg/m 3 3を超える場合には、使用する材料中の塩化物イオン量が変化していることになり、その原因を明らかにすることが必要である。 しかし、コンクリートの打込みを中断するとコールドジョイントの発生等別の問題が生じやすくなる。そこで、0.30kg/m 3 以上の塩化物イオン量が測定されたのちは、運搬車ごとに塩化物イオン量の測定を行い、0.30kg/m 3 以下であることを確認したものについては使用してよいことにしている。

なお、連続した10台の運搬車の測定結果が0.30kg/m 3 以下であることが確認された場合には「標仕」表 6.9.1に示す通常の方法で管理してよいことにしている(「標仕」6.5.4 (a)参照 )。

(2) 細骨材中の塩化物

JIS A 5308(レディーミクストコンクリート)附量書A(規定)[レディーミクストコンクリート用骨材]では、砂に含まれる塩化物量をNaCl 換算で0.04% 以下と規定している。2003年に JIS R 5210(ポルトランドセメント)に規定される普通ポルトランドセメントの塩化物イオン量が0.02%から0.035%に改正されるまで、この程度であればコンクリート1m 3 中の塩化物量は、通常、0.30 kg/m 3 以下を満足していたと考えられる。しかし、JIS R 5210の改正によって普通ポルトランドセメントの塩化物イオン量が順次増加しており、各コンクリート用材料の塩化物イオン量の上限値を守るだけでは、0.30kg/m 3 を超えることが懸念されるようになった。

具体的な計算例を示すと次のようになる 。

?@ 砂の塩化物量を NaCl換算で 0.04%(塩化物イオン量は 0.024%)、単位細骨材量を 800kg/m 3 と仮定すると、砂から加わる塩化物イオン量は0.194 kg/m 3 となる。

?A(一社)セメント協会によると、JISの規定値が 0.02%であった当時の普通ポルトランドセメントの塩化物イオン量は最大でも 0.015%で、余裕分は0.005%であった。この余裕分を現在の規格上限値0.035%から減じ、今後予想される普通ポルトランドセメントの塩化物イオン量の最大値を0.03% と仮定すると、単位セメント量が350kg/m 3 の調合においてセメントから加わる塩化物イオン量は 0.105kg/m 3 となる。

?B 水については、塩化物イオン濃度を200ppm (JIS A 5308 附属書C(規定)[レディーミクストコンクリートの練混ぜに用いる水]に規定される品質基準値)、単位水量を185kg/m 3 とすれば、水からくる塩化物イオン量は0.037 kg/m 3 となる。

?C 化学混和剤については、海砂使用の場合は無塩化タイプを用いることとする。

以上、?@から?Cまでを加えると 0.336 kg/m 3 となる。

このような状況が予想される場合及び発生した場合には、砂・砕砂等塩化物量の少ない骨材との併用等により細骨材の塩化物量を低減させなければならないが、コンクリート中の塩化物イオン量については普段から「標仕」表 6.9.1 に示す方法で適切に管理し、0.30kg/m 3 以下であることを確認しておくことが必要である。

(b) アルカリ総量

使用している骨材について、アルカリシリカ反応性試験の結果が無害と判定されない場合で、その抑制対策としてコンクリート中のアルカリ総量を採用している場合には、「標仕」6.5.1式によってアルカリ総量が 3.0kg/m 3 以下であることを確認することが必要である。 レディーミクストコンクリート工場では各調合ごとに総アルカリ量を計算し技術資料としてもっているので、その計算の根拠となっている使用材料のアルカリ量に関する資料とともに提出を求めて確認する。




6.5.5 圧縮強度

(a) レディーミクストコンクリートの調合管理強度の管理のための試験は、「標仕」6.9.3及び「標仕」6.9.4 に従い JIS A 1132(コンクリート強度試験用供試体の作り方)による 20±2℃の水中養生を行った供試体を用いて材齢28日で実施する。

(b) 管理試験の結果、強度が不足した場合には、原因を調査し、その原因を取り除くため調合の修正等を行う。強度が不足する原因としては、次のようなものがある。

(1) 水セメント比の変動(コンクリートの強度は、主として水セメント比によって決定されるので、水セメント比の変動の影響が大きい。この原因としては細骨材の表面水の変動が挙げられる。)

(2) 骨材の品質変動

(3) 空気量の変動

強度不足の原因が調合にある場合には、「標仕」6.3.2により新たに調合を定めるなどの処置を定めて、改めて「標仕」6.3.2 により計画調合を行うとともに、必要な処置の報告を監督職員に提出して承諾を受けることが必要である。


6章 コンクリート工事 6節 現場内運搬 ,打込み,締固め

第6章 コンクリート工事


6 節 コンクリートの工事現場内運搬並びに打込み及び締固め

6.6.1 工事現場内運搬

(a) 運搬用機器は,次による。

(1) 工事現場内の運搬には、コンクリートポンプを用いる方法が一般的であるが運搬距離が短い場合や時間当たりの運搬量が少ない場合にはバケット、シュート、手押し車等が用いられる。運搬機器は、運搬中におけるコンクリートの品質変化が少なく、打込み時点で所要の品質のコンクリートが得られることを基準に選定することが必要である。 各種運搬機器の概要を表 6.6.1に示す。

表6.6.1 コンクリートの運搬機器の概要(JASS 5より)
表6.6.1コンクリートの運搬機器の概要(JASS5).jpg


バケット、手押し車等及びシュートを用いる場合には、次のような点についての配慮が必要である。

(i) バケッ トを用いる場合

?@ 下部からコンクリートを排出する形式のバケットを用いる場合は、なるべく排出口が底の中央部のあるものとする。

?A コンクリートをあけ移しする形式のバケットを用い、コンクリートを均質、かつ、 容易に排出できるものとする 。


(ii) 手押し車等を用いる場合

?@ 運搬中にコンクリートの材料が分離したり、受け桝から漏出することなどのないようにする。

?A 運搬中に分離を認めた場合は、練り直し、コンクリートが均質になるようにする。


(iii) シュートを用いる場合

?@ シュートは、コンクリートの分離や漏れを生じることなく、滑らかに流れる構造のものとする。

?A シュートは、原則として、縦形フレキシブルシュートとする。 ただし、やむを得ない場合は、?@を満たすことを確認して、傾斜形シュートを用いることができる。

?B 高所からコンクリートを流下させる場合は、縦形フレキシブルシュートを用いることとし、その投入口と排出口との水平方向の距離は、垂直方向の高さの1/2 以下とする。

?C 領斜形シュートを使用する場合は、次による。

1) 傾斜は、4/10 〜 7/10 とする。

2) シュートの排出口には、長さ 600mm以上の漏斗管を付ける。

(2) 運搬用機器は、事前に清掃しておき、付着しているコンクリート塊や油等がコンクリートに混入しないようにする。 また動力利用の機械は、途中で故障すると計画どおりの施工ができなくなるので、十分に整備・点検をしておく必要がある。

(b) コンクリートは、所要のスランプ、強度、耐久性が得られるように材料の調合割合を定めている。スランプが少し小さいからといって工事現場内の運搬時に水を加えると、水セメント比が大きくなって所要の強度や耐久性が得られなくなる。 したがって、運搬及び圧送の際には絶対に水を加えてはならない。どうしても圧送が困難な場合には、流動化剤を加えスランプを調整する方法等を検討する。

(c) コンクリー トポンプによる圧送を採用する場合には、工事現場の立地条件、コンクリートの種類、1 日の打込み量等を考慮し, 適切なポンプの機種及び台数を選定する。また、ブーム付きポンプ車以外の場合のフレキシプルホースの長さ(100A 管以下で は 6m 以下、100A管を超えるものは 5m 以下)のほか、次に示す点に対する配慮が必要である。

(1) 輸送管は、圧送中に前後左右に動くので、鉄筋や型枠に輸送管がじかに接していると配筋の乱れ、型枠の変形等の原因となる。したがって、輸送管の保持については、「標仕」6.6.1 (c)(1) を厳守させることが大切である。

(2) 輸送管の径が大きいほど圧力損失が小さくなり、圧送性が向上する。したがって、輸送管の径が大きいほど圧送可能な距離や高さが大きくなるとともに時間当たりの圧送量も増える。 輸送管の径の選定に当たって考慮すべき事項については「標仕」 6.6. l (c)(2)に示されている 。

(3) 「標仕」では コンクリートの圧送開始前にモルタルを圧送することにしている。 これを行わずに圧送すると、輸送管内にモルタル分が付着し、排出されたコンクリートがモルタル分の少ないコンクリートになり強度が低下する。

なお、この時使用するモルタルは、あとから打ち込むコンクリートの品質に悪影響を与えないように富調合のものとすることが必要である。

圧送されたモルタルは、平成 19年版「標仕」では「良質な部分は少量ずつ分散すれば型枠内に打ち込むことができる」としていたが「良質な部分」や「少量ずつ」ということの判断基準が難しいことや、そもそもコンクリートは JIS A 5308 ( レディーミクストコンクリート)によることとしているため、平成22年版「標仕」では、原則として型枠内には打ち込まないことにされた。 環境配慮の観点からは廃棄処分とするモルタル量は少ないことが望ましく、先送りモルタルを必要最小限にするような計画を立てることが大切である。

(4) 圧送されたコンクリートで圧送途中に著しく変質した部分及び圧送中に閉塞したコンクリートは 施工上又は品質上の問題があるので廃棄する。




6.6.2 コンクリートの練混ぜから打込み終了までの時間の限度

(a) コンクリートは、練混ぜ終了後,時間の経過に伴ってスランプや空気量等のフレッシュ性状が変化する。レディーミクストコンクリート工場では、工事現場到着時に所定の品質を保証しているが、経過時間が長くなるとスランプの減少が大きくなり、コールドジョイント発生のおそれが高くなる。したがって「標仕」では練混ぜ開始から打込み終了までの時間の限度を外気温が 25℃以下の場合120分、外気温が 25℃を超える場合 90分以内と定めている。 JIS A 5308(レディーミクストコンクリート)では、レディーミクストコンクリートの工事現場までの運搬時間の限度を1.5 時間としているので、到着したコンクリートをできるだけ早く打込みができるように準備をしておくとともに打込み速度に合わせてコンクリートが搬入されるように配車計画を立て、現場での待ち時間をできるだけ少なくする。 また、コンクリートポンプで圧送する場合には、コールドジョイント防止の観点から長時間中断しないで圧送することが大切である。

(b) 練混ぜから打込み終了までの時間の限度は、コールドジョイントや豆板等の施工欠陥を防止する目的で定めたものである。したがって、コンクリートの練上がり温度を下げたり、凝結を遅らせるなどの対策を取れば時間の限度を超えても欠陥を生じないで施工することは可能である。工場から工事現場までの運搬時間が長い場合等でこのような特別の対策を講じて練混ぜから打込み終了までの時間の限度を変更する場合には、上述のような品質確保の方法が行われることを確認したのちに承諾する。




6.6.3 打 継 ぎ

(a) 打継ぎはできるだけ少なくし、応力の小さいところで打ち継ぐことが基本である。梁及びスラブに鉛直打継ぎ部を設けなければならない場合には、せん断応力の小さいスパン中央付近又は曲げ応力の小さいスパンの1/3〜1/4 のところがよい(図6.6.1 参照)。 梁の付け根で打継ぎをするのは避けなければならない。

なお、柱及び壁の場合の水平打継ぎ部は、スラブ、壁梁又は基礎の上端に設ける 。


図6.6.1鉛直打継ぎ位置.jpg
図 6.6.1 鉛直打継ぎ位置


(b) 打継ぎ部の仕切り面の施工に当たっては次の事項に留意する。

(1) せき板を密に隙間なく組み立て、モルタルの流出を防ぐとともにコンクリート打込み後せき板を取り外しやすいように仕切る。

なお.仕切り面は必要に応じて目荒らしを行ったのち、清掃し、コンクリート打込み前に水湿しを行う。

(2) 梁や壁には、鉄筋を骨としてメタルラスや板を張って仕切るのがよい。 打継ぎ位置付近に出入口等の開口部がある場合にはそこで仕切るとよい。

(3) 梁・壁で、割竹・しの竹類を差し込んで仕切る方法は、密に隙間なく差し込んでも下部からモルタルが流出することが多く、あまりよくない。また、コンクリート打込み後、時期を見て割竹等を動かしてコンクリートとの付着をなくしておかないと抜けなくなる。

(4) スラブの仕切り面は、上端筋が下がりがちなので十分注意する。

(5) 打継ぎ面が外部に接する箇所には、打継ぎ部の防水処理を行うため目地を設ける。

(c) 打継ぎ面に水がたまっていると、その部分に打ち込んだコンクリートの水セメント比が大きくなり、所要の品質が得られないことがあるので、水がたまらないようにする。また、水がたまってしまった場合には、コンクリート打込み前に取り除くことが必要である。

(d) 打継ぎ面は、 レイタンスがたまったり、ぜい弱なコンクリートになりやすい。 レイタンスやぜい弱なコンクリートの上に新しいコンクリートを打ち込んでも付着が十分得られないので、高圧水洗等によりこのような部分を取り除き、健全なコンクリートを露出させてから打ち継ぐことが必要である。




6.6.4 打 込 み

(a) 多量の雨が降っている時にコンクリートを打ち込むと、雨水がコンクリート中に入って水セメント比が大きくなり、所要の強度が得られなくなる。また、コンクリー卜温度が2℃未満となる低温時にはセメントの水和反応が遅れ、初期凍害を受けるおそれがある。 このような場合には、コンクリート中に雨水が入らないようにしたり、コンクリート温度を高めるとともにその後の養生方法を適切に定めるなどの対策を講じたうえで打ち込むことが必要である。このような対策を取らないで打ち込むと所要の品質を確保することが困難になる。

(b) 打込み開始前に行う型枠内部の清掃では、電気掃除機等により雑物を取り除く。水洗いだけでは, 柱下部等に雑物が集中することになるので、柱下部等に掃除口を設けて内部に落ち込んだ雑物を取り除く。

せき板が乾燥している場合には、打込みに先立って散水するが,寒冷時等で水が凍結するおそれのある場合には散水を行ってはならない。

(c) コンクリートの打込みは、打ち込む場所へ、コンクリートが分離しないように直接静かに入れて、十分に締め固め、そのコンクリートが落ち着いてから次のコンクリートを打ち込むことが大切である。また、壁に打ち込んだコンクリートをバイブレーターを使用して柱を通過させて横流しをすると、柱の鉄筋によって粗骨材の移動が阻害され、モルタルの多いコンクリートとなるのでこのようなことは避けなければならない。

打込みの基本的事項を次に示す。

(1) 低い位置から落とす。

(2) 型枠内部で横流しすることを避ける。

(3) 全体が均ーな高さを保つように水平に打ち込み、十分締め固めてから次の層を打ち込む。

(4) 打ち込む位置の近くに落とし込む。 1 箇所に多量に打ち込み、横に流してはならない。


(d) コンクリートの打込み区画は、工程上無理のない区画とするとともに、施工欠陥を生じやすい部位については特に注意して施工することが必要である。

(1) パラペットの立上り部分は漏水上の欠陥を生じやすく、また、ひさし・バルコニー等は片持梁となりこれを支持する構造体部分との接合部に応力が集中する。このような部分は、構造体と同一の打込み区画とすることが必要である。

(2) 1 回に打ち込むように計画した区画内では、コールドジョイント等の施工欠陥を防止するために 連続して打ち込み一体となるようにすることが大切である。


(e) コンクリートの打込み速度は、打込み場所の施工条件によって大きく異なるが、 十分締固めができる範囲とすることが大切である。スランプ 18 cm程度のコンクリートをコンクリートポンプ工法で打ち込む場合の目安は20〜30 m 3 /h 程度である。


( f ) シュートやホース等の運搬用具から打ち込む位置までの自由落下高さが大きすぎたり、水平流動距離が大きいとコンクリートに材料分離を生じる。したがって、縦形シュートを用いたり、横流しをしないようにしてコンクリートの分離を防止する。

コンクリートを 1箇所にまとめて打ち込み、その後バイブレーター等で横流しをすると材料分離を生じるおそれがあるので避けなければならない。コンクリートは、打ち込む場所にできるだけ近い位置に打ち込むことが原則である


(g ) 部材ごとの打込みの進め方及び打上りの欠陥を次に示す。

(1) 基礎の打込み

( i ) 捨コンクリート等の面に、水、土、木片その他支障となる雑物のないように掃除する。特に水の排除に注意する。

( ii ) 連続基礎のとき、翌日打ち込む部分との打継ぎ箇所は確実に打ち止める。流し放しにしてはならない。

(iii ) 長い距離を斜めシュートで打ち込むことはなるべく避けるべきであり、やむを得ない場合は、U字形断面のものを使用し、中間で一度ホッパーに受けて次のシュートに流す。 また、末端部には縦形シュートを使用し、コンクリートを鉛直に落とす ( 図 6.6.2 参照)


図6.6.2基礎の打込み.jpg
図 6.6.2 基礎の打込み


(2) 柱の打込み

( i ) 柱の打込みは、コンクリートを一度スラブ又は梁で受けたのち柱各面から打ち込む。

梁筋と柱筋の交差している箇所から打ち込むと、特に分離しやすい(図6.6.3参照)。

( ii ) 吐出する向こう側のせき板にコンクリートが直接当たらないように、小形受け桝等で受けてから鉛直に落とす。

( ?B )高い柱(4.5〜 5m 以上)に打ち込む場合は、次のようにするのがよい。

?@ 最上部から縦形シュートが使用できるときはこれを利用して、常に打上げ面近くでコンクリートを放出する。

?A 縦形シュ ートが使用できない時は、柱中段のせき板に打込み口を設け、外部にポケッ ト状のたまり場をつくり、コンクリートがゆったり落ちていくようにする(図 6.6.4 参照)。


図6.6.3柱の打込み(各面から打ち込む).jpg
図 6.6.3 柱の打込み(各面から打ち込む)


図6.6.4柱の打込み(高い柱を打つ場合).jpg
図 6.6.4 柱の打込み(高い柱を打つ場合)


(3) 壁の打込み

( i ) 打込み口は、原則として 1 〜 2m 間隔で各位置から平均に落し込むようにする。

(ii ) 少ない打込み口から落として、型枠内に大山や大傾斜をつくり,横流しで平らにしたり、斜めのまま打ち込むと、分離や豆板ができやすい。

(iii) 柱脇の開口部下部等にコンクリートを充填させるために、柱に打ち込まれているコンクリートを引き出してはならない(図6.6.5 参照)。


図6.6.5壁の打込み(両脇に開口).jpg
図6.6.5 壁の打込み(柱脇に開口 )

(4) 梁の打込み

(i) 梁の全高を同時に両端から中央に向かって打ち込む。

(ii) せいが高い梁は、スラブと一緒に打ち込まず、梁だけ先に打ち込む 。

(iii) 柱、壁等を、梁下で一度止めずに上部まで連続して打ち込むと、柱、壁等のコンクリートの沈降により、梁との境目にひび割れが発生するおそれがあるので、壁及び柱のコンクリートの沈みが落ち着いたのちに梁を打ち込む 。


(5) スラブの打込み

(i) スラブは、梁のコンクリートが沈降してから打ち込まないと(4)(iii)と同様に、梁との境目にひび割れが発生するおそれがあるので、梁のコンクリートが落ち着いたのちにスラブを打ち込む。

(ii) 打込みは、遠方から手前に打ち続けるように行う(図 6.6.6 及び7参照)。

(iii) コンクリートの浮き水が多い場合は、排除する。

(iv) 柱、壁の打込みでこぼれて硬化したコンクリー トは、掃除してからコンクリートを打ち込む。



図6.6.6スラブの打込み(ポンプ).jpg
図 6.6.6 スラブの打込み(ポンプによる打込み)


図6.6.7スラブの打込み(バケット).jpg
図 6.6.7 スラブの打込み(パケットによる打込み)


(6) 階段の打込み

(i) 階段のある打込み区画は、階段回りから打ち込む。

(?A) コンクリートを壁又は柱からかき出さずに直接打込み、壁際取合いはふたをする。


(7) 鉄骨鉄筋コンクリート打込み

鉄骨鉄筋コンクリートの鉄骨梁のフランジ下端や、梁と柱の接合部下端は、コンクリートの充填が最も難しいところであるので、梁せい、梁幅、フランジ幅、型枠との間隔によりコンクリートのワーカビリティー、打込み方法等を考えなければならない。軟練りのコンクリートを打ち込むと、充填後の沈降により、フランジ下端に空洞を生じやすい。特に梁せいの大きい場合は、フランジ下端が空洞になっている例が多いので、片側からコンクリートを流し込み、反対側にコンクリートが上昇するのを待って、全体に打ち込む方法をとるのがよい(図6.6.8参照)。


図6.6.8_イ(柱回り).jpg
図6.6.8_ロ(窓回り).jpg
図6.6.8_ハ(障害物回り).jpg
図6.6.8_ニ(階段回り).jpg
図6.6.8_ホ(鉄骨回り).jpg
図6.6.8 各部位に起こりやすい打上りの欠陥


(h)同一区画のコンクリート打込み時における打重ね時間の限度は、打重ね部にコールドジョイントを発生させないで施工できる範囲で定める必要がある。コールドジョイントを発生させないためには、先に打ち込まれているコンクリートに再振動を加えられることが必要なことから「標仕」6.6.4 (h)では再振動可能な範囲と定めている。この時間の限度は、通常の場合外気温 25℃以下の場合 120分、外気温が25℃を超える場合 90分を目安とする。

なお、凝結時間を遅らせる対策を取った場合には打重ね時間の限度を長くすることが可能である。


(i)コンクリート中に埋め込まれた鉄筋、スペーサー及びバーサポート等は、打込み時のコンクリートの圧力や振動機の振動及びポンプの配管移動の影響により移動を生じやすく、このため鉄筋等のかぶり厚さが不足する場合が多く認められている。かぶり厚さが不足すると鉄筋が腐食し建物の耐久性上問題となる。したがって、コンクリートの打込みに際しては鉄筋等が移動しないようにすることが重要である。




6.6.5 締 固 め

(a) コンクリートに生じる欠陥としては、気泡、豆板、不充填部等がある。これらの欠陥を生じさせないためには、棒形振動機あるいは型枠振動機を用いて十分締め固め、密実なコンクリートとすることが大切である。

(b) 通常締固めに用いている振動機は、JIS A8610(建設用機械及び装置 - コンクリート内部振動機)に定めるものであり、スランプ18cm以下のコンクリートを施工する場合には、この棒形振動機を用いなければ密実な締固めを行うことはできない。棒形振動機を挿入できないところや届かないところは、型枠振動機や突き棒・たたき等を併用して締め固める必要がある。公称棒径 45mmの棒形振動機1台当たりの締固め能力は、スランプ10〜15cm程度の普通コンクリートの場合で10〜15m 3 /h 程度であるので、打込み速度に応じて振動機の使用台数を定める必要がある。

(c) 公称棒径 45mmの棒形振動機の長さは 60〜80cmであるので、1層の打込み厚さはこれ以下にし、打ち込んだコンクリートの下層まで振動機の先端が入るようにすることがコールドジョイントをはじめとする施工欠陥を防ぐために大切である。挿入間隔は、振動機の振動が伝わる有効範囲内で定める必要があり、前述した公称棒径 45mmの振動機の有効範囲を参考にして60cmと定めている。公称棒径が 45mmより小さい振動機を用いる場合は、挿入間隔を狭くする必要がある。

なお、振動を加える時間を長くし過ぎると材料分離を生じるので、加振時間はコンクリートの表面にペーストが浮くまでと定めている。振動機を用いて締め固める場合の注意事項は次のとおりである。

(1) 鉛直に挿入して加振し、挿入間隔は 60cm程度とする。

(2) 振動機の先端が鉄骨、鉄筋、埋込み配管、金物、型枠等になるべく接触しないようにする。

(3) 振動時間は、コンクリート表面にセメントペーストが浮き上がるときを標準とし、コンクリートに穴を残さないように加振しながら徐々に引き抜く。加振時間は、1箇所 5〜15 秒の範囲とするのが一般的である。


(d)型枠振動機は新たにコンクリートが打ち込まれる部分に取り付けて振動を加える必要がある。したがって、打込み高さと速度をよく考慮して取り付けることが重要であり、既に締め固めた部分に振動を加えると材料分離を生じ、まだコンクリートが打ち込まれていない部分に振動を加えると型枠が損傷したり変形する原因となる。


(e) コンクリートの締固めを十分行うためには.適切な量の振動機と締固め要員を準備することが必要である。コンクリートの輸送管1系統で 1日の打込み量が 150m 3 程度を想定した場合には、振動機を 2台準備し、 振動機要員 2名、打込み・締固め要員等 7名以上配置し、また、 施工中に生じる型枠・鉄筋の保守・点検をするために型枠工と鉄筋工を配置しておくようにする。また、施工中に生じる埋込み配管等の不具合を修正するために、設備要員を配置することも必要である。




6.6.6 上面の仕上げ

(a) ここでいうコンクリート上面の仕上げとは、打込み、締固めのあと工程及び左官仕上げの前工程としての天端均しのことであり、せき板に接しないで仕上げられる床スラブ・屋根スラブの上面とパラペットの天端等が対象となる。この面の精度は、特記されるべきであるが、特記がない場合は「標仕」表 6.2.5 を標準として、この平たんさが得られるように沈下代を見込んで天端均しを行う。

(b) コンクリートを打ち込む前に床仕上げに必要な造り方定規を設ける。仕上げ精度が要求される場合にはガイドレール(鉄骨鉄筋コンクリートの場合はピアノ線等を張ることもある。)等を 3.5〜4.0 m間隔に設箇し、基準となる造り方定規は鉄骨その他狂いの生じない箇所に設け、常に点検して正確に水平又は所要の勾配を保持するようにする。

(c) コンクリート打込み後、所定の高さに荒均しを行い、タンパ等で粗骨材が表面より沈むまでタンピングし、同時に造り方定規にならい、定規ずりして平たんに敷き均す。

ガイドレール等の造り方定規は、定規均し後取り外し、その跡はコンクリートを充填し、木ごてで平らに均す。

壁や柱際等で均し定規等を使用できない部分は、特に不陸の生じないよう、十分に木ごて等でタンピングして平たんに均す。

定規均しをむらなく行ったのち、中むら取りを木ごてを用いて行う。

木ごてずりは、コンクリート面を指で押しても少ししか入らない程度になった時期に行う。


(d) 床スラブのコンクリートを直均しで仕上げる場合には、「標仕」15 章3 節に従って実施する。





6.6 7 打込み後の確認等

(a ) 打込み後の仕上り状況の確認時期が「標仕」6.6.7 (a)に示されている。豆板、空洞、コー ルドジョイント等の有無の確認は、せき板取外し後に行えるが、構造体に発生しているひび割れ及びたわみについては,支保工で支えている状態では正しい確認ができないので、支保工を取り外したのちに行う。補修が必要なひび割れかどうかの判断は、通常表面のひび割れ幅で行っているが、鉄筋に錆を発生させやすい条件かどうかによる耐久性上の判断と防水性が要求されるかどうかによって異なってくる。補修を必要としないひび割れ幅の値は(公社) 日本コンクリート工学会「コンクリートのひびわれ調査、補修・補強指針」では、防水性が要求される場合には0.05mm 以下,防水性は要求されないがかぶり厚さや表面被覆の有無等から見て鉄筋の錆を発生させやすいなど耐久性から見た条件が厳しい場合(塩害・腐食環境下)には 0.2mm 以下、耐久性から見た条件が普通の場合(一般屋外環境下)0.3mm以下、耐久性から見た条件が緩やかな場合(土中・屋内環境下)0.4mm以下等としている。

( b ) 主要構造部に影響のあるような施工欠陥が認められた場合の処置は、6.9.6による。



6章 コンクリート工事 7節 養生

第6章 コンクリート工事


7 節 養 生

6.7.1 養生温度

(a) 十分に湿気を与えて養生した場合のコンクリート強度は、材齢とともに増進するが、乾燥あるいは低温の状態においたものは増進が非常に少ない。特に硬化初期の養生は、その影響が大きい。コンクリート養生の基本は、常に水分を与え適温に保つことである。

建築基準法施行令第75条には、コンクリートの養生についての規定があり、「コンクリート打込み後 5日間はコンクリート温度が 2℃を下らないように(中略)養生しなければならない。ただし、コンクリートの凝結及び硬化を促進するための特別の措置を講ずる場合においては、この限りでない。」と規定されている。「標仕」では、打込み後 5日間以上、早強ポルトランドセメントの場合は強度発現が速いため 3日間以上、コンクリート温度を 2℃以上に保つよう規定されている。

(b) 冬期等で著しく気温が低い場合は、打込み後のコンクリートが凍結しないように保温採暖が必要になる。

(c) 部材断面の中心部の温度が外気温より 25℃以上高くなるおそれのあるときの養生は「標仕」 6.13.4 による。


6.7.2 湿潤養生

打込み後のコンクリートが透水性の小さいせき板で保護されている場合は、湿潤養生と考えてもよい。しかし、コンクリートの打込み上面等でコンクリート面が露出している場合、あるいは透水性の大きいせき板を用いる場合には、日光の直射、風等により乾燥しやすいので、初期の湿潤養生が不可欠となる。湿潤養生には、養生マッ卜又は水密シート等で覆う方法、連続又は断続的に散水又は噴霧を行う方法、膜養生剤や浸透性養生剤の塗布による方法等がある。

夏期や風の強い日に施工した床スラブ・ひさし等薄い部材ではコンクリートが急速に乾燥するため、特に初期の湿潤養生が大切である。また、混合セメントを使用するときには特に早期における乾燥を防ぐようにする。

なお、JASS 5 8.2[湿潤養生]においては、湿潤養生の期間について、コンクリート部分の厚さが 18cm以上の部材において、早強・普通・中庸熱ポルトランドセメントを用いる場合、計画供用期間の級が短期及び標準の場合は、コンクリートの圧縮強度が10 N/mm 2 以上、長期及び超長期の場合は同じく15N/mm 2 以上に達したことが確認されれば、以降の湿潤養生を打ち切ることができるとしている。


6.7.3 振動及び外力からの保護

(a) 硬化中のコンクリートに振動・外力を与えると、ひび割れが発生したり損傷を生じることがあり、また、早期材齢で荷重を加えるとたわみの増大につながることがある。このため、コンクリートが硬化するまでは十分な養生が必要である。

(b) 材齢 1日でやむを得ずスラブの上に乗るような場合には、コンクリートに振動・衝撃を与えないように静かに作業しなければならない。


6章 コンクリート工事 8節 型枠

第6章 コンクリート工事


8 節 型 枠

6.8.1 適用範囲

(a) 鉄筋コンクリート造の建物の出来ばえは躯体コンクリートの精度によって大きく左右され、更に、この躯体は型枠工事の優劣によって決まるといっても過言ではない。このように型枠工事はすべての工事の基本ともなるので綿密な計画と慎重な施工が肝要である。

(b) 型枠は、材料や工法の開発に伴い、合理化、複合化、システム化が進められている。これは、建築工事の大型化・高層化、熟練労働者の不足、工事の機械化、地球環境の保護等の社会状況の変化に対応し、品質の確保、工期の短縮、コスト低減等を目指したものである。

躯体工事において、型枠の占める割合は高く、品質、工期、コストの上で効果の大きいものが多いので、施工者の提案については、設計担当者に要求機能を確認し、実績等を考慮して採用の可否を検討する。

型枠の主な合理化・複合化・システム化工法を適用部位別に整理すると図 6.8.1のようになる。

なお、図 6.8.1 の「打込み型枠」及び「捨型枠」はコンクリート表面の状態を確認できないため、コンクリー トに豆板、空洞、コールドジョイント等が生じないように、調合、打込み、締固め等に留意し、密実なコンクリートとすることが大切である。

(c) 施工者が行う型枠計画は、他の工事との関連、納まり、施工性等を検討したうえで、材料・工法を選択し、施工計画及び施工図を作成する。

(d) 型枠計画は、安全で、かつ、要求品質に見合った精度で施工する工法を採用するという観点でチェックする。

図6.8.1適用部位別の合理化・複合化・システム化型枠工法.jpg
図 6.8.1 適用部位別の合理化・複合化・システム化型枠工法


6.8.2 一般事項

(a) 型枠の構成は、コンクリートに直接接するせき板、せき板を支える支保工及びせき板と支保工を緊結するセパレーター、締付け金物等からなる。せき板には通常、脱型を容易にするためはく離剤が塗り付けられている。 支保工は、床・梁等を支える根太、大引、支柱(パイプサポート)、支保梁、支柱の座屈を防止する水平つなぎ・ブレースのほか、柱、壁等のせき板の位置を保持するとともに転倒を防ぐ内端太、外端太、建入れ直しサポート、チェーン等から構成される。在来工法による一般的な型枠構成例を図6.8.2 に示す。


図6.8.2一般的な型枠構成例.jpg
図6.8.2 一般的な型枠構成例(型枠の設計・施工指針より)

(b) 型枠には、コンクリート自重、打込み時の振動や衝撃による作業荷重、コンクリートの側圧、水平荷重等が作用するので、その荷重に対して安全であることを構造計算によってチェックすることが重要である。 また、必要な仕上り寸法・精度が得られるように型枠剛性についても検討することが必要である。「標仕」6.2.5 では「 部材の位置及び断面寸法の許容差」と「コンクリート表面の仕上り状態(目違い・不陸等及び平たんさ)」が規定されておりこれらを満足するように型枠を設計する。

型枠の構造計算の方法は、 (一社)日本建築学会「型枠の設計・施工指針」に詳しく述べられているので、それを参考にするとよい。

次に型枠の構造計算に関する基本的事項を示す。

(1) 型枠材料の許容応力度等

(i) 型枠の構造計算に用いる材料の許容応力度は、次のとおりとする。

?@ 支保工については、労働安全衛生規則第241条に定められた値

?A 支保工以外のものについては、次の法令又は基準等における長期許容応力度と短期許容応力度の平均値

1) 建築基準法施行令第89 条及び第90 条

2) (-社)日本建築学会「鋼構造設計規準」、同「軽鋼構造設計施工指針」 又は同「木質構造設計規準」

木材の繊維方向の許容曲げ応力、許容圧縮応力及び許容せん断応力の値について、労働安全衛生規則第241条に定められている。

(ii) 型枠支保工に用いる鋼材の許容応力度は、労働安全衛生規則第 241条において次のように定められている。

?@ 鋼材の許容曲げ応力及び許容圧縮応力の値は、当該鋼材の降伏強さの値又は引張強さの値の 4分の3の値のうちいずれか小さい値の 3分の2 の値以下とすること。

?A 鋼材の許容せん断応力の値は、当該鋼材の降伏強さの値又は引張強さの値の 4分の3の値のうちいずれか小さい値の100分の38 の値以下とすること。

?B 鋼材の許容座屈応力の値は、限界細長比に応じて計算を行って得た値以下とすること。

(iii) 型枠合板の断面性能、その他型枠に使用される材料の断面性能、支柱の許容荷重、締付け金物の許容耐力等は、「型枠の設計・施工指針 」、メーカーのカタログ等を参照されたい。


(2) コンクリート打込み時の荷重

(i) スラブ型枠設計用荷重 (T.L) は、実状に応じて定めるのが原則であるが、通常のポンプ工法の場合 6.8.1式により算出する。

T.L= D.L + L.L (6.8.1 式)

D.L (固定荷重):
コンクリート、型枠等の自重で、普通コンクリートの場合は 23.5 x d (kN/m 2 ) に型枠の重量として 400N/m 2 を加える。 (d= スラブの厚さ (m))

L.L ( 作業荷重+衝撃荷重):「労働安全衛生規則」 から 1,500N/m 2 以上とする 。


(ii ) 型枠設計用側圧は、JASS5 によればよい。


(3) 曲げを受ける型枠各部材の計算方法

型枠材の計算方法には、定められた基準はないが、一般には次により、構造計算を行い定める。

?@ 合板せき板の場合は、転用等による劣化を考慮し、単純梁として扱う。

?A 合板以外のせき板、根太、大引等は、単純梁と両端固定梁の平均とする。

?B 各部材のたわみは、3mm以下とする。ただし、打放し仕上げの場合は、1〜2 mm程度とすることが望ましい。

なお、構成部材の総たわみ量は、コンクリートの仕上りの平たんさ等を考慮して適切に定める。

?C 部材の応力及びたわみの計算に用いる公式は、「型枠の設計・施工指針」を参考にするとよい。


(4) 水平荷重

型枠支保工の倒壊等を防止するため、型枠支保工の設計に当たっては、労働安全衛生規則第 240 条に基づき、次に示す水平荷重が作用しても安全な構造のものとする。

?@ 鋼管枠を支柱として用いるものであるときは、当該型枠支保工の上端に、設計荷重の 100 分の 2.5 に相当する水平方向の荷重が作用しても安全な構造のものとすること。

?A 鋼管枠以外のものを支柱として用いるものであるときは、当該型枠支保工の上端に、設計荷重の 100 分の 5 に相当する水平方向の荷重が作用しても安全な構造のものとすること。


(c) せき板の継目から水やモルタルが漏れ出すと、豆板や砂じま、空洞等が生じ、コンクリートの品質が低下する。また、型枠の取外しが容易でないと、コンクリートに損傷を与える危険性があるので、型枠は細部まで十分考えられたものが必要である。


(d) コンクリート打放し仕上げ( 仕上塗材、塗装等の仕上げを行う場合を含む。)の場合、外部に面する部分は打増しを行うことがある。 その厚さは特記によるとされている。


(e) コンクリートは乾燥により収縮するので、ひび割れの発生を完全に防止することは極めて困難である。したがって、適切な位置にひび割れ誘発目地を設置し、ひび割れを目地内に発生させて目地をシールするなどして対処するのが一般的である。ひび割れ誘発目地の形状・寸法は特記によることになっている。ここで、「標仕」11.1.3 では、ひび割れ誘発目地の深さは打増したコンクリート厚さとするとされている。


(f ) その他、型枠に要求される品質としては、次のようなものが挙げられる。

(1) 型枠は、その他の工事、特に鉄筋工事と関連して、鉄筋のかぶり厚さを確保できる材料と工法とする。

(2) せき板はコンクリートの硬化を阻害したり、コンクリートのアルカリによってコンクリートに着色したり、木材のむしれを生じるものであってはならない。

(3) コンクリートが打ち込まれてからせき板と支保工が取り除かれるまでの間は、コンクリートにとって初期の養生期間になるので、型枠はコンクリートの養生を阻害するものであってはならない。


6.8.3 材 料

(a) 「標仕」では、せき板の材料は、特記によることとしている。 特記のない場合は、次のように規定されている。

(1) コンクリート打放し仕上げの場合は「標仕」表6.2.4 のコンクリート表面の仕上り程度に見合ったものとしており、打放し仕上げの種別が A 種( 目違い、不陸等の極めて少ない良好な面)の場合は、表面加工品を用いるようにしている。

(2) コンクリート打放し仕上げ以外の場合は、「合板の日本農林規格」の「コンクリート型枠用合板の規格」によるB - C 品又はその他の材料で コンクリートの所要の品質を確保できるものを用いるとしている。ここで、B - C 品とは、表面の品質が B、裏面の品質が C(品質のよい順に A、B、C、D の 4 ランクあり)であるものをいい、現在市販されているコンクリート用型枠合板の主流となっているものである。 合板型枠以外の型枠としては、金属製型枠、樹脂系の型枠(FRP・プラスチック等)、打込み型枠(断熱型枠、簿肉プレキャストコンクリート板、けいカル板、スレート型枠等)、ブロック型枠、ラス型枠等がある。 また、近年環境に配慮した型枠として、再生材樹脂系の型枠が使用されている。これらの材料を用いる場合は、型枠としての性能及び仕上げに対する影響について調査し、設計担当者等と打ち合わせて採否を決める。


(b) 「標仕」においては、せき板に合板を用いる場合は、「合板の日本農林規格」の「コンクリート型枠用合板の規格」による表面加工品又はB - C 品を用いることとしている。

なお、合板の厚さは特記によることになっているが、特記がなければ厚さ 12mmのものを使用するとしている。

(c) 床型枠用鋼製デッキプレート(フラットデッキ)について、(一社)公共建築協会では、「建築材料・設備機材等品質性能評価事業」(1.4.4 (e)参照)の一環として、平成 4年の建設省「建設技術評価」に準じて技術評価の基準を定めて評価を行っている。

設計・施工に当たっては「床型枠用鋼製デッキプレート(フラットデッキ) 設計施工指針・同解説」が参考になる。 本設計施工指針では、平成18年版でフラットデッキの材料(鋼材)の機械的性質として引張強さを295N/mm 2 以上(16 年版では270N/ mm 2 以上)と改めている。これは、(一社)日本建築学会「綱構造設計規準 」 (2005)に準拠し,鋼材の降伏点又は耐力と引張強さの70%のうち小さい方の値をもって許容応力度を決定する場合の基準値とする趣旨を満足するようにしたためである。

フラットデッキの施工上の要点を次に示す。

(1) 施工荷重によるたわみを考慮して、フラットデッキには10mm程度のキャンバー(むくり) が付いている。そのため、梁との隙間からのろ漏れ等が生じないように施工する。

(2) RC造・SRC 造の場合のフラットデッキと型枠の接合方法例を図 6.8.3 に示す。フラットデッキは図中の横桟木で受けるため、横桟木で受けた荷重が縦桟木で支持できる型枠設計とする必要がある。


図6.8.3型枠との接合方法.jpg
図 6.8.3 型枠との接合方法 (RC・SRC造、スラブ厚300mm以下)
(床型枠用鋼製デッキプレート(フラットデッキ) 設計施工指針・同解説より)

(3) 鉄骨梁とフラットデッキの接合方法の例を図6.8.4に示す。

鉄骨梁継手部や柱取合い部はアングル又はF.B. を溶接留めとし、その上に現場切断したフラットデッキを留め付ける。


図6.8.4鉄骨梁との接合方法.jpg
図 6.8.4 鉄骨梁との接合方法(S造、スラブ厚300mm以下)

(4) フラットデッキは衝撃に弱く、曲がったりへこんだり変形したりしやすい。そのため、敷設時にはめ込みにくいなどの手戻りが生じるので養生方法、揚重方法、吊り治具等に注意する 。

(5) 設備配管等の貫通口が規則的な場合又は集中している場合は、局部破壊の原因となるので補強する必要がある。

なお、フラットデッキは、リブでコンクリート等の施工荷重を負担しているのでリブを切断する場合等は、デッキ受けを設け荷重を梁や型枠に確実に伝えるようにしなければならない。


(d) 断熱材兼用型枠工法として 建設技術評価規程(昭和53年建設省告示第 976 号)に基づき建設大臣が評価した工法がある。この工法は、鉄筋コンクリート造等の建築物の内断熱施工部分について、在来の型枠用合板の代わりに断熱材を兼用した型枠を使用する工法である。せき板としての性能を有した断熱材を主体とし、支保工と一体となってコンクリート型枠としての性能を発揮するものである(図 6.8.5参照)。型枠の断熱材は、「標仕」19.9.2 (a)に示すもののほか、木毛板の類、磁気テープ廃材等があり、また、その構成板材は単板、複合板、サンドイッチパネル等となっている。 型枠の解体がないため現場内での作業の軽減等の施工合理化が図られること、また、建設廃棄物の発生を抑制することができる。


図6.8.5断熱材兼用型枠の納まり例.jpg
図6.8.5 断熱材兼用型枠の納まり例

(e) MCR 工法

MCR 工法は外壁タイル張りのはく離防止を図る工法として開発されたものである。

コンクリート型枠に専用のシート(「標仕」6.8.3(e)参照)を取り付けておき、コンクリートを打ち込むことによりコンクリート表面に多数のあり状の穴を設け、躯体コンクリートとモルタルとを機械的にかみ合わせることではく離を防止する工法である (図 6.8.6 参照)。この工法の特徴は、ばらつきが少なく安定した接着強度が得られるとともにかみ合わせ効果により面内方向のせん断応力に対する抵抗性が高いことにある。


シートは、表 6.8.1 に示す 3種類がある。型枠の種類、型枠の幅等によって使い分ける必要があるが、600mm幅の合板型枠あるいは表面処理合板型枠であれば両端フラットタイプを使用したほうが、シート間からのセメントペーストの漏出がなく、仕上りはよい。 シートを取り付けた状態の例を図6.8.7 に示す。

シートは、コンクリートの養生のためにせき板を外したのちも極力存置し、モルタル塗りの直前にシートを取り外すようにする。


図6.8.6MCR工法の施工手順.jpg
図 6.8.6 MCR工法の施工手順

表 6.8.1 MCR工法専用シートの種類と特徴
表6.8.1MCR工法専用シートの種類と特徴.jpg


図6.8.7MCRシートを取り付けた状態.jpg
図6.8.7 シートを取り付けた状態


(f) ボルト式型枠緊張材には各種あるが、図 6.8.8 にその代表的なものを挙げる。


図6.8.8各種締付け金物の組立て例.jpg
図 6.8.8 各種締付け金物の組立例


(g) はく離剤は次の性能を有するものとする。

(1) せき板とコンクリー トのはく離性が良好であること。

(2) せき板あるいはコンクリートの成分と反応し、コンクリートに悪影響を与えないもの。

(3) 木製せき板のように吸水性のあるものはその吸水性を減少することができるもの。

(4) はく離剤自身による汚れをコンクリート面に残さないこと。

(h) 資源の有効活用の面から、型枠は積極的な転用や再使用が望まれる。 転用や再使用する場合は、コンクリー トに接する面をよく清掃し、締付けボルト等の貫通孔あるいは補修箇所を修狸のうえ、必要に応じてはく離剤を塗り付けて用いる。

( i ) スリーブには、鋼管のほか、硬質ポリ塩化ビニル管や紙チューブが用いられるが径が大きくなった場合は、コンクリート打込み時の変形防止のための補強を十分に行う必要がある。

最近では、基礎梁の人通孔等、大口径のスリーブには土木用排水管(樹脂製コルゲート管)が軽量で、変形しにくいため使用される場合も多い。

また、取付けに際しては、コンクリート打込み時にスリーブが浮いて移動しないように、型枠に堅固に留め付ける 。

( j ) スリッ ト材は腰壁や垂れ壁のある建物で、柱が短柱になることを防ぐために腰壁等を柱際で縁を切るために設けるものである(固 6.8.9 参照)。防火区両となる部分に使用する場合は、材質等について注意する。


図6.8.9スリット用材料の例.jpg
図 6.8.9 スリット用材料の例

(k) 合板によるコンクリート表面の硬化不良について次に示す。

(1) せき板の中には、木材成分中の糖類、タンニン酸等がコンクリートのアルカリに抽出されて、セメントの硬化を妨げるものがある。

(2) 硬化不良を起こしたコンクリートの表面の状態

(i) コンクリートの打上り面が暗黒色になりざらつく。

(ii) 極端な硬化不良の場合には、表面数mmがまった<硬化しないので、触れると粉状にはく落したり、薄い板状にはく離する 。


(3) 硬化不良を起こしやすいせき板

(i) 取扱い不良等により変質し、抽出物の量が増大したもので、長期間太陽光線(紫外線)の照射を受けた場合に多く、シート等で覆えば防止できる。

また、長時間空気中に暴露された場合や腐朽菌が表面に生じた場合にも硬化不良が生じる。

(ii) 木材の成分によるもので、赤松、米杉等がある。

(iii) 広業樹は針業樹より硬化不良を起こしやすい。

(iv) 硬化不良を起こしやすいせき板を現場で見分けるには、せき板表面にセメントペーストを塗り付け 2〜3日後にはがして、その表面状態を調べるのがよい。


6.8.4 型枠の加工及び組立

(a) コンクリート打込み後、強度発現が不十分な状態で作業を開始すると、その荷重を受けるコンクリートに有害なひび割れやたわみ等の障害が生じるおそれがあるので、注意が必要である。コンクリートが有害な影響を受けない材齢は、直上階の作業に伴う荷重の大きさによって異なり、一概に示せないが、墨出し等の軽微な作業であれば大きな影響はない。また、資材を置く場合は、1 箇所に集中させないなどの配慮が必要である。また、床がモノリシック仕上げの場合、床面を傷つけないように養生期間を確保したり、資材等の仮置き場所に養生を施す。


(b) コンクリート寸法図、型枠の加工及び組立等を次に示す。

(1) コンクリート工事を行うには、必ず各部のコンクリートの形状及び寸法を詳細に表した施工図を作成する。 多くの場合、平面図を中心にし、必要に応じて部分的断面図を補助として記入している。このような施工図をコンクリート寸法図、スケルトン、コンクリート躯体図等と呼んでいる 。

コンクリート寸法図は単にコンクリート型枠作製のためだけでなく、他の関連工事に対しても基本になる施工図であるから、次の事項を十分検討する。

(i) 構造体の形状、寸法、位置関係

?@ 通り心、壁心等の基準線からの構造材の位置
?A 構造材(柱、梁、壁、スラブ、基礎、階段等)の形状、寸法、割付け及び符号
?B 軒高、階高及びGLと 1階床高との関係
?C 梁、スラブその他の基準階高との上下関係
?D 打継ぎ箇所
?E 構造材相互の取合い


(ii) 仕上げ,納まり等の関係

?@ 仕上げ(左官、タイル下地等)と関連して必要な増打ち等のコンクリート寸法図
?A 建具、造作等の納まりによる開口及び周辺の形状寸法
?B タイル、石等の割付けによるコンクリート寸法の増減
?C 躯体に断熱材等を打込みとする場合の寸法
?D インサート、ブロック壁の位置及び差し筋の径並びにピッチ、アンカーボルト、丸環、ルーフドレンその他の取付け金物類の位置
?E 打放しのコンクリート部分(化粧目地、伸縮調整目地、ひび割れ誘発目地)
?F その他特にコンクリートを欠き込む必要のある場合及びコンクリートに打込みとなるもの


(iii) 防水上の納まり

?@ 屋根面の勾配、パラペット回り等の立上り部分、笠木等の防水の納まり
?A 便所、浴室等の防水層の納まり(スラブの高さ、周囲の納まり)
?B 工キスパンションジョイントの納まり
?C 水を使用する部分のスラブ勾配や排水
?D 地階二重壁内の水抜きパイプ


(iv) 設備関係

?@ 梁、壁等の貫通孔(スリーブ等)
?A 便所、洗面所、浴室等の衛生器具用開口
?B ダクト用の開口
?C 設備機器用機械台及び機械吊上げ用フック類
?D 分電盤、端子盤、消火栓、改め口等の開口あるいはプルボックス等のコンクリート打込みとなる箇所
?E マンホールの大きさ及び位置(タラップの位置、ニ重スラブ内に設置するポンプ類の大きさ)
?F 槽類の位置及び総重量
?G エレベーター関係
 1) ピット内の幅及び深さ
 2) 機械室の床開口
 3) 敷居受け用ブラケット
 4) ガイドレールの位置と取付けボルト
 5) エレベーター据付け用の吊上げフック類
 6) インジケー ター、押しボタン穴


?H 二重スラブ内の水抜き及び通気パイプ、集水桝、スラブ勾配


(v) 仮設関係

?@ 材料搬出入口(建物内外への出入口及び上下の運搬用開口)
?A 設備用大型機械の搬入開口部、搬入経路及び総重量
?B パイプシャフトの器材搬入口
?C 切張り支柱用開口
?D タワークレーン用開口
?E 外部足場つなぎ用インサート


(vi) その他コンクリートと関連するもの

(2) 一般に、型枠工事の実施に先だち、型枠材料とその仕様の設計を行う。 これらは型枠工事の品質、コスト、工程に大きく影響するが、コンクリート寸法の標準化が大きな要素となる。 そこで、設計担当者と打合せのうえ、コンクリート寸法をできるだけ標準化する方向で検討するとよい。

(3) 型枠の加工には、現場加工と工場加工がある。 これらは、建物形状、加工場所、工期、輸送方法、組立方法等を検討して決定される。

工場加工には、在来の合板型枠と合理化・システム化型枠の場合がある。 在来の合板型枠の場合は、型枠パネル加工を設備の整った工場で集中的に行うもので、最近は CAD/CAM を利用して効率化した工場もある。

(4) 柱型枠建込み前に柱脚部の清掃水洗い等を行っておく。建込み後には、ごみ・おがくず等が入らない処置をとり、万ー入った時は水洗い、又はとがらせた鉄筋等で除去する。 除去が難しい場合は下部に掃除口を設ける。


(5) 型枠組立の例を次に示す。

( i ) 柱、梁の例を図 6.8.10 に示す。

図6.8.10型枠組立の例.jpg
図 6.8.10 型枠組立の例

(ii) 柱、壁の下部の例を図 6.8.11 に示す。

表6.8.11柱,壁の下部組立の例.jpg
図 6.8.11 柱、壁の下部組立の例


(iii) 階段型枠の例を図 6.8.12 に示す。

図6.8.12階段型枠の組立ての例(平面).jpg
図6.8.12階段型枠の組立ての例(断面).jpg
図 6.8.12 階段型枠の組立の例


(iv) 窓及び階段は、図6.8.13 のようにコンクリー トが盛り上がるのを防ぐために端部にふたをする。窓の場合は、外側へ勾配を付ける。また、小さい窓等の下枠は全閉とし、空気穴を設けてコンクリートの充填具合を点検する。

図6.8.13窓及び階段のふたの例.jpg
図 6.8.13階段窓及び階段のふたの例


(v) 型枠の建入れ補強の例を図6.8.14 に示す。


図6.8.14型枠の建入れ補強の例.jpg
図 6.8.14 型枠の建入れ補強の例


(6) 支柱に関する労働安全衛生規則の抜粋を次に示す。

労慟安全衛生規則
( 昭和47年9月30日労働省令第32号最終改正平成25年6月28日)

(型枠支保工についての措置等)
第242条 事業者は、型枠支保工については、次に定めるところによらなければならない。

一. 敷角の使用、コンクリートの打設、くいの打込み等支柱の沈下を防止するための措置を講ずること。

二. 支柱の脚部の固定、根がらみの取付け等支柱の脚部の滑動を防止するため措置を措講ずること。

三. 支柱の継手は、突合せ継手又は差込み継手とすること。

四. 鋼材と鋼材との接続部及び交差部は、ボルト、クランプ等の金具を用いて緊結すること。

五. 型枠が曲面のものであるときは、控えの取付け等当該型枠の浮き上がりを防止するための措置を購ずること。

五の二. H 型鋼又は I 型鋼(以下この号において「H 型鋼等」という。)を大引き、敷角等の水平材として用いる場合であって、当該 H型鋼等と支柱、ジャッキ等とが接続する箇所に集中荷重が作用することにより、当該 H型鋼等の断面が変形するおそれがあるときは、当該接続する箇所に補強材を取り付けること 。

六. 鋼管(パイプサポートを除く。以下この条において同じ。)を支柱として用いるものにあっては、当該鋼管の部分について次に定めるところによること。

イ. 高さ 2メートル以内ごとに水平つなぎを 2方向に設け、かつ、水平つなぎの変位を防止すること。

口. はり又は大引きを上端に載せるときは、当該上端に鋼製の端板を取り付け、これをはり又は大引きに固定すること。

七. パイプサポートを支柱として用いるものにあっては、当該パイプサポートの部分について次に定めるところによること。

イ. パイプサポートを 3 以上継いで用いないこと。

ロ. パイプサポートを継いで用いるときは、4 以上のボルト又は専用の金具を用いて継ぐこと。

ハ. 高さが3.5 メートルを超えるときは、前号イに定める措置を講ずること 。


八. 鋼管枠を支柱として用いるものにあっては、当該鋼管枠の部分について次に定めるところによること。

イ. 鋼管枠と鋼管枠との間に交差筋かいを設けること。

ロ. 最上層及び 5層以内ごとの箇所において、型枠支保工の側面並びに枠面の方向及び交差筋かいの方向における 5 枠以内ごとの箇所に、水平つなぎを設け、かつ、水平つなぎの変位を防止すること。

ハ. 最上層及び 5 層以内ごとの箇所において、型枠支保工の枠面の方向における両端及び 5 枠以内ごとの箇所に、交差筋かいの方向に布枠を設けること。

二. 第六号ロに定める措置を講ずること。


九. 組立て鋼柱を支柱として用いるものにあっては、当該組立て鋼柱の部分について次に定めるところによること。

イ. 第六号口に定める措置を講ずること。

ロ. 高さが 4 メートルを超えるときは、高さ 4 メートル以内ごとに水平つなぎを2 方向に設け、かつ、水平つなぎの変位を防止すること。


九の二. H 型鋼を支柱として用いるものにあっては、当該 H 型鋼の部分について第六号ロに定める措置を構ずること。


十. 木材を支柱として用いるものにあっては、当該木材の部分について次に定めるところによること。

イ. 第六号イに定める措置を講ずること。

ロ. 木材を継いで用いるときは、2 個以上の添え物を用いて継ぐこと。

ハ. はり又は大引きを上端に載せるときは、添え物を用いて、当該上端をはり又は大引きに固定すること。


十ー. はりで構成するものにあっては、次に定めるところによること。

イ. はりの両端を支持物に固定することによりはりの滑動及び脱落を防止すること。

口. はりとはりとの間につなぎを設けることにより、はりの横倒れを防止すること。
                 労働安全衛生規則



(c) ボックス、スリーブ、埋込み金物等を構造躯体に埋め込む場合、コンクリートの打込み時の流れによって位置がずれないよう、堅固に取り付ける。 コンクリートの流れの力は予想以上に大きいので注意が必要である。


(d) 上下階の支柱が同一位置にないと、強度が十分発現していないコンクリートスラブに悪影響を与えることになるので、できるだけ同じ位置に支柱を配置する。また、地盤上に直接支柱を立てる場合には、支柱の下に剛性のある板を敷くなどして、支柱の沈下を防がなくてはならない。


(e) 型枠に、足場や遣方等の仮設物を連結させると、足場等が動いた時に型枠位置がずれたり寸法が狂ったりするおそれがあるので、避けなければならない。


( f ) 監督職員は、施工者が行う型枠の品質管理・検査の報告を受け、必要と思われる事項については確認する。施工者が行う型枠工事の品質管理・検査の例を表 6.8.2に、型枠の計画から取外しまでの作業工程と主要管理項目の例を表6.8.3 に示す。


表6.8.2 型枠の材料・組立・取外しの品質管理・検査の例 (JASS 5より)
表6.8.3型枠の材料・組立・取外しの品質管理・検査の例.jpg



表6.8.3 型枠の計画から取外しまでの作業工程と主要管理項目の例 (JASS 5 より)
表6.8.3型枠の計画から取り外しまでの作業工程.jpg


6.8.5 型枠の存置期間及び取外し

(a) せき板は、コンクリート形状を決定するだけでなく、若材齢のコンクリートを寒気や外力、乾燥から保護する役割がある。また、支柱は、梁やスラブが自立し、有害なひび割れやたわみが生じなくなるまで支持する役割をもっている。したがって、それぞれ必要な最小存置期間が定められており、その期間を経たのちに型枠を取り外すことになる。


(b) 「 標仕」では、せき板の最小存置期間は「標仕」表6.8.2 に、支柱の最小存置は「標仕」表6.8.3 に定められている。

せき板の最小存置期間は、材齢による場合とコンクリートの圧縮強度による場合とに分けられており、そのどちらかを満足すればよいことになっている。圧縮強度による場合は、若材齢のコンクリートが初期凍害を受けることなく、また、容易に傷つけられない最低限必要な強度として 5 N/mm 2 と定められている。 また、材齢による場合は、存置期間中の平均気温とセメントの種類の組合せにより必要な期間が定められており、これは、上述の 5 N/mm 2 の圧縮強度が得られる期間から定められている。

支柱の最小存置期間もせき板の場合と同様、材齢による場合とコンクリトーの圧縮強度による場合とに分かれている。

圧縮強度による場合は、スラブ下で設計基準強度の85%以上又は 12N/ mm 2 以上、梁下では設計基準強度以上となっている。ここで、「現場打コンクリートの型わく及び支柱の取りはずしに関する基準」(昭和46年 1月 29日 建設省告示第110号、最終改正 昭和 63年 7月 26日)では、梁下の場合「設計基準強度以上又は12N/mm 2 以上」としているが「標仕」において「又は12N/mm 2 以上」が削除されたのは、安易に若材齢(低い強度)での取外しを認めるべきではないとの考え方によっている。 更に、「施工中の荷重及び外力について、構造計算により安全であることが確認されるまで」となっており、施工中の荷重について検討が必要である。ただし、ここでいう構造計算とは、型枠支柱を取り外したのちの施工中の荷重、コンクリートの変形、外力等について行った構造計算であり、設計時の構造計算とは別のものである。

材齢による場合は、せき板と同様、存置期間中の平均気温とセメントの種類の組合せにより必要な期間が定められている。

支柱の存置期間を構造計算によって算定する方法については「型枠の設計・施工指針」等に記載されている。参考として、JASS 5 9節[型枠]における存置期間の考え方の骨子を次に示す。

(1) 支柱は、コンクリートが施工中の荷重にっよて有害なひび割れやたわみを生じることのない圧縮強度以上になるまで取り外さないことを基本とする。

(2) 床スラブが有害なひび割れを起こす可能性のある条件として、施工荷重時の曲げひび割れ強度 0.64√Fc (Fc:設計基準強度に対応した 28日圧縮強度 N/mm 2 )以上となる場合を一つの目安としている。 ただし、梁部材は一般に鉄筋量も多く、部材せいも大きいので、たわみやひび割れへの影響は小さいと考えこの規定から除外する。

(3) 支保工を早期に(設計基準強度未満)取り外すための条件として、上述の 0.64√Fc を安全率 1.25で除した許容曲げ応力 0.51√ Fc を掲げ、施工荷重時の曲げ応力 σ 0 が、この数値以下となることとしている。

(4) 施工荷重は最下階支持スラブ、梁に作用する施工荷重の値を示している。 この場合、コンクリート打込み時、支保工1層受けと2層受け以上でそれぞれ異なる。

(5) 構造体コンクリートの強度発現は、現場水中養生供試体又は現場封かん養生供試体の圧縮強度試験値から推定し、上の条件を滴たすのに必要な強度管理として現場水中養生供試体又は現場封かん養生供試体の試験値を使用する。

すなわち、施工荷重による曲げ応力 σ 0 に対して取外し可能なコンクリートの圧縮強度 F1 を「所要圧縮強度」 と定義し、 F1 = σ 0 2 / 0.51 2 として、圧縮強度試験により管理する。


(c) 片持梁やひさしは静定構造であり、ひび割れが発生すると大きなたわみにつながるおそれがあるので、支柱の存置期間を必要に応じて延長するのがよい。長大スパンの梁、大型スラブ等の型枠を支持する支柱、施工荷重が著しく大きい場合の支柱等も同様である。


(d)「標仕」では、スラブ下及び梁下のせき板は、原則として、支柱を取り外したのちに取り外すことにしているが、施工方法によっては、支柱を取り外すことなくせき板を取り外せる場合がある。その場合は、昭和 46年建設省告示第 110号の第 1 第一号で定めるスラブ下及び梁下のせき板の存置期間の規定を準用し、平均気温による存置日数又はコンクリートの設計基準強度の 50%以上の強度を確認することにより、支柱を取り外す前にせき板を外す方法もある。ただし、この方法は「標仕」6.8.5 (b)で規定する「原則」以外の方法であり、監督職員は、工種別施工計画書(品質計画)に記載された内容を確認して承諾する必要がある。

また、支柱の盛替え作業は、無造作に行われやすく、また、若材齢のコンクリートに荷重が作用することは望ましくないので、「標仕」では支柱の盛替えは行わないこととしている。


6.8.6 型枠締付け金物の頭処理

(a) 型枠緊張材(セパレーター)の主なものは、コーンを使用しないもの (丸セパ C型)とコーンを使用するもの(丸セパ B型)がある。セパレーターの例を表 6.8.4 に示す。

表6.8.4 セパレーターの例
表6.8.4セパレータの例.jpg


型枠取外し後、丸セパC型の場合はコンクリート表面に座金及び頭(ねじ部分)が露出する。頭はハンマーでたたくことにより、簡単に折れ除去できるが、座金の部分は残る。丸セパ B型の場合はコーンを取り外した穴が残るが、ねじ部分は穴の奥となり穴をモルタル等で埋めれば 表面には何も露出しない。

コーンを使用する目的は、次のように考えられる。

(1) 止水(地下外壁等でセパレーターを伝わってくる水をモルタル防水等で防ぐ。)

(2) 表面の平滑化(防水下地、薄い仕上げ下地等)

(3) 金物を露出させない(打放し仕上げ面、断熱材埋込み面等)。

型枠締付け金物の頭処理に当たっては、これらのことを考慮し、部位別に適切な処理をする。

見え掛りで仕上げがない箇所(設備シャフトの中等)では、丸セパ C型を用いるが、頭を折って除去した跡の座金部分にシアナミド鉛さび止めペイント 2 種 (JIS K 5625) 又は鉛・クロムフリーさび止めペイント 1 種 (JIS K 5674) を塗り付ける。手の届きにくい部分ではスプレーを用いる場合もある。


(b)コーン穴の処理方法の例は次のとおりである。

(1) 漏水のおそれのある地下外壁等では丸セパB型を用い、コーンの跡の穴に防水剤入りのモルタルを充填する。更に、確実な止水が必要な場合は防水工事を施す。

(2) 防水下地や薄い仕上げの下地等の場合は、丸セパB型を用いコンクリー ト面と同一にモルタルを充填する。普通のモルタルでは垂れ下がったり、乾燥収縮するおそれがあるので、水量の少ない硬錬りモルタルを用いることがある。

(3) 打放し仕上げ面等の場合は、丸セパ B 型を用い、穴はコンクリート表面よりわずかに内側にへこませて面内にモルタルを充填する。

コーンの穴埋めは、上記のように左官材料で行う方法と、既製品を用いる場合がある。 主な既製品の例を次に示すが、使用する部位の目的にあったものを使用する。

(i) 埋込みプラグ

プラスティック製のプラグをコーン穴にたたき込んで埋める。

(ii) 接着剤付きコーン(図 6.8.15 参照)

モルタルコーンの先端に接着剤カプセルがセットされており、これをコーン穴に取り付けて指で押し、接着剤カプセルを破壊して接着する。


図6.8.15接着剤付きコーン.jpg
図 6.8.15 接着剤付きコーン(止水・はく離防止)


(iii) モルタルコーン

モルタルコーンをエポキシ系接着剤を用いて取り付ける。

(iv) 打込み式コーン(図 6.8.16参照)

打込み式コーンは、防水機能をもたせたコーンであり、従来のコーンと異なり廃材が生じないのが特長である。

断熱材の部分では、「標仕」19.9.2[断熱材打込み工法](b)(5)によるとされており、そこでは、コーンの除去跡には断熱材を張り付けるか断熱材を充填するようになっている。


図6.8.16打込み式コーンの例.jpg
図6.8.16 打込み式コーンの例


(c) インサート類はスラブ下や壁面に設備機器等を取り付けるために、コンクリートに打ち込まれる。 通常は天井等で隠されるため問題ないが、 天井がなく見え掛りとなる部分や薄い仕上げで支障のある場合は、調合ペイント又は錆止め塗料を途り付ける。防錆塗装付きのインサートや目立たない色のプラスチックのみが露出する製品を用いる場合もある。


6章 コンクリート工事 9節 試験

第6章 コンクリート工事


9 節   試    験

6.9.1 適用範囲

構造材料として用いるコンクリートは、フレッシュ時及び硬化後の性質が設計時に用いた値を満足していることを確認することが必要であり、「標仕」9節[試験]は、そのために実施する試験の方法とその後の処置について記されている。

なお、平成22年版の「標仕」では削除されていた「軽易なコンクリート工事の場合は、監督職員の承諾を受けて、試験を省略することができる」との緩和処置は、平成25年版の「標仕」で再び取り入れられた。「軽易なコンクリート工事」とは、「コンクリートの用途が特に重要でない場合」や「使用するコンクリートの量が少ないなどの工事」で対象となる工事の規模・内容を含め、受注者等と協議を行い、適切な場合には、該当する試験を省略してもよい。

また、平成22年版までの「標仕」ではコンクリートに使用する材料の試験に関する規定を設けていたが、「標仕」6.2.1に規定される ?T類コンクリートの場合は、使用する材料の試験を行う時期や頻度、項目が、I類コンクリートの製造区分に記される JIS Q1011(適合性評価ー 日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))で規定されているので削除された。ただし、?U類コンクリートの場合は、?T類と同じ品質管理が行われているとは限らないため、「標仕」5節[普通コンクリートの品質管理]の 6.5.l (a)(6)で?U類の品質管理が規定されている。


6.9.2 フレッシュコンクリートの試験

(a) フレッシュコンクリートの試験結果は、採取する試科によって異なる場合があるため「標仕」では試料の採取を製造工場ごとに行うこととし、その場所と採取の方法を定めている。

(1)フレッシュコンクリートの性状は、工場で製造されたのち現場へ運搬され、現場内で場内運搬される間に種々変化することがあるため、試験に用いる試料の採取場所としては型枠に打ち込まれる直前が望ましい。しかし、型枠に打ち込む場所で採取する場合には、作業上危険が伴ったり、試験場所まで試料を運搬する手間が生じなるど、作業が繁雑になる。平成22年版の「標仕」からは、JASS 5の品質管理方法と整合させ、軽量コンクリートであっても ?T類コンクリートの場合は荷卸し地点で試料を採取することとなっている。ただし、荷卸しから打込み直前までの間で品質が著しく変動するような場合には、品質を代表すると考えられる箇所、段階で採取する必要がある。

(2)試料の採取方法は、平成22年版「標仕」では「JIS A5308(レディーミクストコンクリート)による」とし、JIS A 1115(フレッシュコンクリートの試料採取方法)附属書1(参考)[分取試料の採取方法]を間接的に参照していたが、平成25年版「標仕」では直接JIS A1115を試料の採取方法として改めた。


JIS A 5308及び JIS A1115の抜粋を次に示す。
JIS A 5308:2011

9. 試験方法

9.1 試科採取方法

試科採取方法は、JIS A 1115(フレッシュコンクリートの試料採取方法)による。


JIS A 1115:2005

3.試 料
採取した分取試料を集めて、一様になるまでショベル、スコップ又はこてで練り混ぜたものを試料とする。試料は、練り混ぜた後、直ちに試験に供する。

4.試料の量 
試料の量は、20L以上とし、かつ、試験に必要な量より 5L以上多くしなければならない。ただし、分取試料をそのまま試料とする場合には、20Lより少なくてもよい。

5.分取試料の採取方法 
分取試料は、試験しようとするコンクリートを代表するように 3か所以上から採取する。分取試科の採取方法は、附属書1(参考)による。


附属書 1 (参考)分取試料の採取方法


2.トラックアジテータから分取試料を採取する場合

排出されるコンクリートから、定間隔に 3回以上採取する。ただし、排出の初めと終わりの部分から採取してはならない。

なお、トラックアジテータで30秒間高速かくはんした後、最初に排出されるコンクリート 50〜100Lを除いて採取することができる。

分取試料は、コンクリート流の全横断面から採取する。この場合コンクリートの排出の速度は、トラックアジテータの回転速度を変えることによって調節しなければならない。

注(3)採取する前に、材料が分離していないことを確認する。


3.コンクリートボンプから採取する場合

配管筒先から出るトラックアジテータ 1台分又は 1バッチと判断されるコンクリート流の全横断面から定間隔に 3回以上採取するか、排出されたコンクリートの山の 3か所以上から採取する。


(b)「標仕」では、フレッシュコンクリートの試験項目、試験方法並びに試験時間及び回数を「標仕」表6.9.1に示している。試験項目は、スランプ、空気量、単位容積質量、温度及び塩化物量となっている。単位容積質量は、一般的には軽量コンクリートが対象となるが、普通コンクリートについても必要に応じて行うことになっている。また、打込み時のコンクリートの温度は硬化後の品質に大きな影響を及ぼし、あまり高い場合には長期強度の増進や耐久性に支障を生じ、低い場合には凍結するおそれがある。そのため、「標仕」では、温度測定を打込み時の気温が 25℃を超える場合(平成22年版「標仕」までは「25℃以上」であったが,「標仕」6.6.2(a)と整合させて「25℃を超える」場合となった)、寒中コンクリート工事の場合、その他温度測定が必要な場合に行うとしている。2006年 9月に JIS A 1156(フレッシュコンクリートの温度測定方法)及び附属書(参考)[温度計の取扱い方法] が制定されたので、平成 22年版「標仕」 からは JIS A 1156が温度測定の試験方法として規定されている。

なお、アルコール温度計は、トレーサビリティーの確保が困難、作業中に破損しやすい、試料に温度計を挿入してから読み取るまでの時間がほかの温度計よりも長いなどの問題点があるため、バイメタル温度計やデジタル温度計等を使用することが望ましい。

荷卸し地点で試料を採取し、その場で試験又は供試体を作成する作業は、本来受注者等が実施すべきものであるが、従来はレディーミクストコンクリートの生産者や運搬者によって行われることが多かった。試験結果の公平性や加水等の不正防止等の観点から改善が望まれており、近年、受入れ検査を専門とする第三者機関が増えている。フレッシュコンクリートの試験は多くがJISの試験方法に基づいており、作業手順が比較的簡単で、装置・器具類に特殊なものが少ない反面、作業手順の間違いや装置・器具類の整備不良により試験結果に大きな影響を及ぼす場合があるため、試験作業者は十分な知識と技能を有していることが必要である。関東や関西等大都市園を中心として、性能評価機関によるコンクリートの受入れ試験に従事する作業者の技能認定が行われている。(一財)建材試験センターや(一財)日本建築総合試験所が実施している採取試験技能者認定制度によって平成 25年 5月現在 1,845名の試験技能者が認定され,両財団法入のホームページ等で認定者とその所属先等が公開されているので参考にするとよい。

(1) スランプ試験方法

(?@) スランプの試験方法は、 JIS A 1101(コンクリートのスランプ試験方法)による。


JIS A 1101:2005

3. 試験器具

3.1 スランプコーン

スランプコーンは、図1のように上端内径100mm、下端内径200mm、高さ300mm及び厚さ 5mm以上の金属製(1)とし、適切な位置に押さえと取っ手(2)を付ける。

注(1)セメントペーストに容易に侵されないもので、試験時に変形しないもの。
 (2)高さの約2/3の所。

JIS A 1101_3試験器具図1スランプコーン.jpg
図 1 スランプコーン

3.2 突き棒    

突き棒は、直径16mm、長さ 500〜600mmの鋼又は金属製丸棒で、その先端を半球状とする。

4.試料  

試料は、JIS A 1115 の規定によって採取するか、又は JIS A 1138 の規定によって作る。


5.試験

試験は次による。

a)スランプコーン(3)は、水平に設置した剛で水平性があり平滑な平板(3),(4)上に置いて押さえ、試料はほぼ等しい量の 3層に分けて詰める。その各層は、突き棒でならした後、25回一様に突く。この割合で突いて材料の分離を生じるおそれのあるときは、分離を生じない程度に突き数を減らす。各層を突く際の突き棒の突き入れ深さは、その前層にほぼ達する程度とする。

注(3)スランプコーンの内面と平板の上面は、あらかじめ湿布などでふいておく。
(4)平板の水平の確認は、水準器を用いて行うのが望ましい。

b) スランプコーンに詰めたコンクリートの上面をスランプコーンの上端に合わせてならした後、直ちにスランプコーンを静かに鉛直に引き上げ(5)、コンクリートの中央部において下がりを 0.5 cm単位で測定し、これをスランプとする。

なお、コンクリートがスランプコーンの中心軸に対して偏ったり、くずれたりして、形が不均衡になった場合は、別の試料によって再試験する。

注(5)スランプコーンを引き上げる時間は、高さ30cmで 2〜3秒とする。

c)スランプコーンにコンクリートを詰め始めてからスランプコーンの引き上げ終了までの時間は、3分以内とする。


6. 試験の結果

スランプは、0.5cm単位で表示する。




(?A)JISでは、コンクリートの中央部の下がりを測ることになっているが、実際にどこを測定したらよいか分からない場合がある。この場合は、一般的には 図6.9.1に示す位置で測定するとよい。


図6.9.1スランプの測定位置(ZKT-201).jpg
図6.9.1    スランプの測定位置 (ZKT-201:2007より)


(?B)現在製造されているほぼすべてのコンクリートに化学混和剤が使用されているが、その種類や気温等によってスランプや空気量が大きく経時変化する場合がある。スランプや空気量の変動は、コンクリートのワーカビリティーや硬化後の強度・耐久性・凍結融解抵抗性等に大きな影響を及ぼすため、試験時期及び回数については、平成 19年版までの「標仕」に示される「6.9.3(b)(1)(?A)の試料の採取ごと」に加え、平成 22年版「標仕」からは、「打込み時に品質変化が認められた場合」が追加されている。


(2) 空気量試験方法

空気量の試験方法には、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法ー空気室圧力方法)、JIS A 1118(フレッシュコンクリートの空気量の容積による試験方法(容積方法))及びJIS A 1116(フレッシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法(質量方法))の 3種類の方法がある。これらの内、最も多く使用されているのは、JIS A 1128である。この試験の実施においては、容器の上面とふたの下面の間の空間を水で満たす方法(注水法)と水を満たさない方法(無注水法)の 2種類の測定方法がある。測定精度としては注水法の方が優れているが、一般的には、測定終了後の試料の廃棄の問題から、多くの建設現場では、無注水法で空気量の試験が行われている。ただし、いずれの方法で実施する場合でも、空気が漏れないよう容器の上面とふたの下面を正しく一致させることが必要である。


JIS A 1128の抜粋を次に示す。

JIS A 1128:2005

3. 器具

3.1 空気量測定器 空気量測定器は.次のとおりとする。

a) 空気量測定器は、図1に示すようにコンクリートとふたとの間の空間に注水して試験するように造られたものとする。

備考 注水しないで試験するように造られたものを用いてもよい。

JIS A1128_3器具_図1空気量測定器.jpg
図 1 空気量測定器

b) 容器は、フランジ付きの円筒状容器で、その材質はセメントペーストに容易に侵されないものとし、水密で十分強固なものとする。また、容器の直径は、高さの 0.75〜1.25 倍に等しくし、その容積は注水して試験する場合(注水法)少なくとも 5L とし、注水しないで試験する場合(無注水法)は 7L 程度以上とする。

さらに、容器はフランジ付きでふたと高圧下で密封される構造となっているものとし、内面及びフランジの上面を平滑に機械仕上げしたものとする。


c) ふたは、フランジ付きでその材質は容器と同様にセメントペーストに容易に侵されないものとし、水密で十分強固なもので、注水口及び排水(気)口を備えていなければならない。ふたの下面及びフランジの下面は、平滑に機械仕上げしたものとする。


d) ふたの上部には、容器の約5%の内容量をもつ空気室を取り付ける。

空気室は、圧力調整弁、空気ハンドボンプ、圧力計及び作動弁備えていなければならない。

なお、作動弁はふたと容器とを組み立てた場合に、100 kPaの圧力で空気及び水が漏れず、通常の使用圧力下において空気量の目盛で 0.1%以下の膨張に抑えられる剛性をもつものでなければならない。さらに、空気室内の高圧の空気を容器に噴出し、かつ、空気室に水が浸入しないような構造でなければならない。

e)圧力計は、容量約 100 kPa で 1 kPa 程度の感度のものとする。

その目盛板の直径は 9cm以上とし、容器中の空気量に相当する圧力の点に空気量の分率%(5.3 参照) を少なくとも8%まで目盛、また初圧力 ( 5.2参照)を明示したものとする。

f) キャリブレーションのため、必要な水量を簡単な操作で器外に取り出せるような器具(長さ 50nm のキャリブレーションパイプ、延長チューブ、図2参照)を用意する。


JIS A1128_3器具_図2キャリブレーションパイプ.jpg
図2 キャリブレーションパイプ
  延長チューブを取り付けた一例

JIS A1128_3器具_図3圧力計の目盛板の例.jpg
図 3 圧力計の目盛板の一例

3.2 振動機  
振動機は、JIS A 8610 に規定するものとする。


4    試料    
試料は、JIS A 1115 によって採取するか、又はJIS A 1138によって作る。

5. 測定器のキャリブレ ーション
備考 測定器のキャリブレーションは 連続した測定の始めに行う。

5.1 容器のキャリブレーション
a) 容器を水平な場所に置き、容器のフランジに沿ってカップグリースを薄く塗る。

b) 容器の高さの 9割程度まで水を入れ、磨きガラス板を当て、残りの水を足しながらガラス板をフランジに沿って移動し、泡を残さないように水を悩たす。

c) このときの水温 ( t 1 )℃をはかる。

d) 容器からあふれた水が付着している場合は、 水をふき取り、容器とガラス板の質量(m 1 )を 1g まではかる。

e) 容器内の水を捨て、容器に付着した水をふき取り容器の質量(m2)を1g まではかる。

f) ガラス板に付着した水をふき取りガラス板の質量(G 1 )を 1g まではかる。

g) 容器の容積は、次の式によって算出する。

 V c = (m 1 − (m 2 + G 1 ))/ρw

ここに、ρw : 水温  ( t 1 ) ℃のときの水の密度

5.2 初圧力の決定     

初圧力の決定は、次のとおり行う。

a) 容器に水を満たし、ふたの表裏を通気できるようにしておいて、静かにふた (3) を容器に取り付ける。 ふたを取り付けた後、排水口を開け、ふたの裏側と水面との間の空気が追い出されるまで注水口から注水する。

注 (3) キャリブレーション器具(図2 参照)は、この際にふたに取り付けておく。

備考 無注水法の場合には、あらかじめ満水の質量をはかり(5.1 参照)、容器にふたを取り付けた後に、その質量だけ注水する。

b) すべての弁を閉じ、空気ハンドポンプで空気室の圧力を初圧力よりわずかに大きくする。 約 5秒後に調節弁を徐々に開いて、圧力計の指針を初圧力の目盛に正しく一致させる。

c)  作動弁を十分に開き、 空気室の気圧と容器内の圧力とを平衡させて圧力計を読み、その読みが空気量 0%の目盛と正しく一致するかどうかを調べる。これが一致しない場合には、空気及び水の漏れの有無、その他を点検した後、キャリブレーションを繰り返す。 2 〜 3 回繰り返したとき、圧力計の指針は同じ点を指すが,零点に一致しない場合には、初圧力の目盛の位置を、指針が零点にとどまるように移動する。 この後操作を繰り返し、初圧力の目盛の位置が適切であったかどうかを確かめる。

備考  無注水法の場合には、無注水用目盛( 図3 参照 )を読む。

5.3 空気量の目盛のキャリブレーション

空気量の目盛のキャリブレーションは、次のとおり行う。

a) 5.2 a) と全く同様の操作を行い、さらに、次の操作を行う。

1) 3.1 f) の器具を用いて容器内の水を約100〜140ml(空気量で約 2%) メスシリンダーに取り出し、容器の容量に対する分率(%)で表す。

2) 容器内の気圧を大気圧に等しくして閉め切り、空気室内の気圧を初圧力まで高める。

3) 作動弁を開いて高圧の空気を容器内に導く。

4) 圧力計の指針が安定してから空気量の目盛を読む。


b) 再びa) に準じて容器内の水を取り出し、取り出した水量の和を容器の容量に対する分率(%)で表す。a) と同様にして空気量の目盛を読む。


c) 前記の採作を 4〜5回(空気量 約 2%ピッチ)行い、取り出した水量の容器の容量に対する分率(%)と空気量の目盛とを比較する。

これらの値がそれぞれ一致しているときには、空気量の目盛は正しい。一致しない場合には、両者の関係を図示する。この図を空気量のキャリブレーションに用いる。

備考 圧力計を読む場合には、圧力計の針が安定するよう、毎回圧力計を指で軽くたたいてから読む。


6. 骨材修正係数の測定    

骨材修正係数の測定は、次のとおり行う。(4)

注(4) 骨材修正係数は骨材が異なると変わる。通常同一のロットの骨材では一定としてよいが、随時試験によって確認することが推奨される。

a) 空気量を求めようとする容量 V c のコンクリート試料中にある細骨材及び粗骨材の質量を、次の式によって算出する(5)。

 m f = − V C / V B ×  m f
 m c = − V C / V B × m c

ここに、
m f :容積 V C のコンクリート試料中の細骨材の質量(kg)
m c :容積 V C のコンクリート試料中の粗骨材の質(量kg)
V B :1 バッチのコンクリートのでき上がり容積 (L)
V C :コンクリート試料の容積(容器の容積に等しい)(L)
m f ’:1 バッチに用いる細骨材の質量(kg)
m c ’:1 バッチに用いる粗骨材の質量(kg)

注(5) 空気量の測定を行ったコンクリートから、150μmのふるいを用いてセメント分を洗い流し、骨材の試料を採取してもよい。


b) 細骨材及び粗骨材の代表的試料を、それぞれ質量で m f 及び m c だけ採取する 。 約 1/ 3 まで水を満たした容器の中に骨材を入れる。細骨材と粗骨材は混合して少しずつ容器に入れ、すべての骨材が水に浸されるようにする(6)。骨材を入れるときには、 できるだけ空気が入らないようにし、出てきた泡は速やかに取り去らなければならない。空気を追い出すために、容器の側面を木づち(槌)などでたたき、また細骨材を加えるごとに 25mmの深さに逹する まで突き棒で約 10 回突くものとする。

注(6) 試料骨材粒の含水状態を、コンクリート試科中の骨材粒の含水状態と同様にするため、5 分間程度水に浸すのがよい。

c) 全部の骨材を容器に入れた後、水面の泡 をすべて取り去り、容器のフランジとふたのフランジとをよくぬぐい、ゴムパッキンを入れ、ふたを容器に締め付け、排水(気)口から水があふれるまで注水する。次にすべての弁を閉じ、空気ハンドボンプで空気室の圧力を初圧力よりわずかに大きくする。約 5秒後に調節弁を徐々に開lいて、圧力指針を初圧力の目盛に一致させる。次に作動弁を十分に開き空気室の気圧と容器内の圧力とを平衡させて圧力計の空気量の目盛を読み、これを骨材修正係数  (G) とする(7)。

注(7) 必要があれば 5.3 c) によってこの読みを補正する。

7. コンクリートの空気量の測定     

コンクリートの空気量の測定は、次のとおり行う。

a) 試料を容器の約1/ 3 まで入れ、ならした後、容器の底を突かないように各層を突き棒で 25回均等に突く。突き穴が なくなり、コンクリートの表面に大きな泡が見えなくなるように、容器の側面を10〜15 回木づち(槌)などでたたく。さらに容器の約 2/ 3 まで試料を入れ、前回と同様の操作を繰り返す。最後に容器から少しあふれる程度に試料を入れ、同様の操作を繰り返した後、定規で余分な試料をかき取ってならし、コンクリート表面と容器の上面とを正しく一致させる。突き棒の突き入れ深さは、ほぼ各層の厚さとする。


b) 振動機で締め固める場合には、JIS A 1116 の 5.2(振動機で締め固める場合)によって行うものとする。 試料は2層に分けて入れ、各層の断面を3等分に分けて締め固める。振動機は、その層が底又は側面に触れないようにし、振動機を抜く際には、空気穴が残らないように注意する。 振動持続時間はコンクリートのワーカビリティーと振動機の性能によって定める。ただし、スランプ 8cm以上の場合は、振動機を用いない。

c) 容器のフランジの上面と、ふたのフランジの下面を完全にぬぐった後、ふたを容器に取り付け、空気が漏れないように締め付ける。排水口から排水されて、ふたの裏面と水面との間の空気が追い出されるまで軽く振動を加えながら注水口から注水する。最後にすべての弁を閉じる。

d) 空気ハンドボンプで空気室の圧力を初圧力よりわずかに大きくする。約 5 秒後に調節弁を徐々に用いて、圧力計の指針が安定するよう圧力計を軽くたたき、指針を初圧力の目盛に正しく一致させる。約 5秒経過後、作動弁を十分に開き、容器の側面を木づち(槌)などでたたく。

再び、作動弁を十分に開き、指針が安定してから圧力計の目盛を小数点以下1 けたで読む(7)。その読みを、コンクリートの見掛けの空気量(A1)とする。測定終了後は、ふたを外す前に注水口と排水(気)口を両方聞いて圧力を緩める(8)。

注(8) 容器及び空気室の両方の圧力を緩める前に作動弁を開かないように注意する。これを怠ると水が空気室に入り、その後の測定に誤差を生むことになる。


8. 計算

a) コンクリートの空気量    

コンクリートの空気量(A)は、次の式によって算出する。

A = A 1 − G

A : コンクリートの空気量 ( %)
A 1 :コンクリートの見掛けの空気量 (%)
G : 骨材修正係数(9)

注(9)  骨材修正係数が 0.1%未満の場合は、省略してよい。

b) ふるい分け前のコンクリートの空気量

試験した試料が 40mmより大きい最大寸法の骨材を用いたコンクリートの場合、ふるい分け前のコンクリートの空気量 (A) は、次の式によって算出する。

A f = 100 × A × V c / ( 100 × V t − A × V a )

V c :ふるい後のコンクリートの全容積から空気量を差し引いた容積(m 3
V t :ふるい前のコンクリートの全容積から空気量を差し引いた容積(m 3
V a :ふるい前のコンクリートの中の40mmを超える骨材の全容積(m 3


c) モルタル部分の空気量  

コンクリート中のモルタル部分の空気量(A m )は、次の式によって算出する。

Am = 100 × A × V c / [100 × V m + A( V c − V m )]

V m : コンクリート中のモルタル部分の成分の 全容積から空気量を差し引いた容積(m 3





(3) 単位容積質量

単位容積質量の試験方法は、JIS A1116(フレッシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法(質量方法))による。

空気量測定用容器の容積が正確に確認できている時には、この容器を用いて単位容積質量を測定してもよいことになっているので、空気量の試験を実施する際に質量も同時に測定しておけば、単位容積質量を容易に求めることができる。


(4) 温度

温度の測定は,JIS A 1156(フレッシュコンクリートの温度測定方法)による。フレッシュコンクリートの温度は,硬化後のコンクリートの品質に大きな影響を及ぽす重要な情報であるが、これまでは温度の測定方法に規定がなく、上限・下限の温度付近での温度管理は必ずしも適切ではなかった。現在フレッシュコンクリートの温度測定にはアルコール温度計が多く使用されているが、これらには JIS規格がなく、適正な校正が行われず、トレーサビリティーの確保も困難なうえ、実温度と比較すると 1℃程度低い温度を示す場合がある。また、アルコール温度計や水銀温度計は破損しやすく、作業中の危険を防止するためにも JIS A 1156附属書(参考)[温度計の取扱い方法]に従ってバイメタル温度計やデジタル温度計等に変更するのがよい。

JIS A 1156 の抜粋を次に示す。


JIS  A 1156: 2006

3. 試験用器具

a) 温度計

温度計は、接触方式の温度計とし、 0 〜 50℃の測定範囲の目量が 1 ℃以下のものとする。

なお、温度計の校正は、JIS Z 8710に規定する 7.2(接触式温度計の校正方法)によって行う。

備考   
接触方式とは、測定対象と温度計の検出部(感温部)とを物理的によく接触させて同じ温度に保ち、温度を測定する方法をいう。また、温度計の検出部とは、測定対象に接触し、その温度と同一温度になるべき部分をいう (JIS Z 8710参照)。

b) 容器

試料を受ける容器は、水密なものとし、内径(一辺) 及び高さが14cm以上かつ容量が2L 以上とする。(1)

注(1)  容器として一輪車を用いてもよい。


4. 試料

試料は、JIS A 1115 の規定によって 2L 以上採取する。


5. 測定方法

a) 試科を容器に入れ、直射日光や風などが当たらない平らな場所に静置する。

b) 温度計は、容器の中央部からほぼ垂直に挿入する。その際、温度計の検出部全体が試料に浸没するまで挿入する。 温度計を挿入した後、温度計周囲の試料表面を軽く押しなら(均)す。

c) 温度計は、示度が安定するまで静置し、試料に挿入した状態で示度を読み取り記録する。

参考  各温度計の取扱い方法は、附属書(参考)による。

d) 試料の採取から示度を読み取るまでの時間は、 5 分以内とする。



附属書(参考)温度計の取扱い方法

この附属書(参考は)、フレッシュコンクリートの温度測定方法における温度計の取扱い方法の標準を示すものであり、規定の一部ではない。

1. ガラス製棒状温度計による測定

ガラス製棒状温度計を用いてフレッシュコンクリートの温度測定を行う場合は、JIS Z 8705(ガラス製温度計による温度測定方法) によって行う。

ガラス製棒状温度計は、JIS B 7411(一般用ガラス製棒状温度計 ) に規定される全浸没温度計又は浸没線付温度計を用いる。

全浸没温度計を用いて温度測定を行う場合には、JIS B 7411 の 4.2 に従い、その液柱頂部がフレッシュコンクリートの表面と同一面又は 2 目盛以上、上方にならないように挿入する。

浸没線付温度計を用いて温度測定を行う場合は、球部(ガラス製棒状温度計の先端部分で、感温液が封入されている部分)から浸没線までをフレッシュコンクリート試料中に挿入するとともに、そのときの挿入深さは60mm以上とする。

温度計の示度の読取りは、上記条件に従って温度計をフレッシュコンクリートに挿入し、両者が熱的平衡に達した後、目盛面に垂直な方向から見て行う。

なお、熱的平衡に達するまでの時間(示度が安定するまでの時間)は、2 分以上とする。

全浸没温度計を感温液柱の一部を露出した状態で使用する場合、又は浸没線付温度計を正しくない浸没状態(浸没線まで挿入していない状態)で使用する場合には、温度計の示度に大きな誤差を生じることがあるので、浸没条件を満足しなければならない。

なお、温度計破損によるけがや試料へのガラス片混入等を防止するため、保護管の使用、又は飛散防止シート付きの温度計を使用することが望ましい。


2. 抵抗温度計等による測定     

白金抵抗温度計やサーミスタ温度計等の抵抗式測温体による温度計を用いてフレッシュコンクリートの温度測定を行う場合は、JIS Z 8704(温度測定方法一電気的方法)によって行う。  抵抗温度計は、 JIS C 1603(指示抵抗温度計)などのJIS C 1604(測温抵抗体) 及び JIS C 1611(サーミスタ測温体) に規定された抵抗式測温体を用いたものとする。 温度計の示度の読取りは、検出部をフレッシュコンクリートに挿入し 両者が熱的平衡に達した後に行う。

なお、そのときの挿入深さは、ガラス製棒状温度計による測定と同様、60mm以上とする。


3. 熱電温度計による測定      

熱電温度計を用いてフレッシュコンクリートの温度を測定する場合は、JIS Z 8704によって行う。熱電温度計は、JIS C 1601(指示熱電温度計)、JIS C 1602(熱電対)及び JIS C 1605(シース熱電対)に規定された熱電対を用いたものとする。温度計の示度の読取りは、検出部をフレッシュコンクリートに挿入し、両者が熱的平衡に達した後に行う。

なお、そのときの挿入深さは、ガラス製棒状温度計による測定と同様、60mm以上とする。

4. バイメタル式温度計による測定  

バイメタル式温度計を用いてフレッシュコンクリートの温度を測定する場合は、JIS Z 8707(充満式温度計 及びバイメタル式温度計による温度測定法)によって行う。温度計の示度の読取りは、感温部全体をフレッシュコンクリートに挿入し、両者が熱的平衡に達した後に行う。

なお、熱的平衡に達するまでの時間(示度が安定するまでの時間)は、3分以上とする。



( 5 )  塩化物量試験

フレッシュコ ンクリートの塩化物含有量の試験方法は、 旧・(財)国土開発技術研究センターの技術評価を受け    た塩化物量測定器によることとしている。技術評価を受けた測定器の概要を表 6.9.1に示す 。

なお、これらの測定器による方法は簡易試験方法である。試験結果等に疑間が生じた場合は、 JIS A 1144( フレッシュコンクリート中の水の塩化物イオン濃度試験方法)によって確認するとよい。

また、最近では単位セメント量の増加や高性能 AE減水剤等の使用により試料ろ液の採取が困難な場合がある。 このような場合には、JIS A 1144 附属書A(規定)[ 試料ろ液の採取が困難なフレッシュコ ンクリート からの試 料ろ液の採取方法 ]によって試科ろ液を採取するとよい。

JIS A 1144 の抜粋を次に示す。


表6.9.1    技術評価を受けた塩化物量測定器の概要
表6.9.1 技術評価を受けた塩化物量測定器の概要.jpg


JIS   A 1144: 2010

附属書  A(規定)

試料ろ液の採取が困難なフレッシュコンクリートからの試料ろ液の採取方法

序文    
この附属書は、粘性が高く試料ろ液の採取が困難なフレッシュコンクリート試料を水によって希釈し、試験に供する試料ろ液を採取する方法について規定する。

A.1  試験用器具    

試験用器具は、次のものを用いる。

A.1.1  はかり    

はかりは、ひょう量がフレッシュコンクリート試料とかくはん容器との合計量以上で、目量が 1 g 又はこれより小さいものとす る。

A.1.2    かくはん容器     

かくはん容器は、フレッシュコンクリート試料と水とを入れてかくはんを行っても漏れの生じない十分な大きさのものとする。

なお、かくはん時に転倒震とう(盪)を行う場合は、フレッシュコンクリート試料と水とを入れて転倒震とう(盪) ができる大きさのポリプロビレン製広口瓶などを用いるとよい。

A.2 希釈に用いる水       

フレッシュコンクリート試料の希釈に用いる水は、蒸留法若しくはイオン交換法によって精製した水、又は逆浸透法、蒸留法、イオン交換法などを組合わせた方法によって精製した水とする。

JIS K 0557に規定する種別 A1以上又は日本楽局方に規定する精製水以上の純度に精製された水を用いるとよい

A.3 フレッシュコンクリート試料中の水の希釈倍率           

フレッシュコンクリート試科中の水の希釈倍率は、3倍を標準とする。

A.4 フレッシュコンクリート試料のはかりとり量     

フレッシュコンクリート試科は、2 kg 以上を 1 g のけたまではかりとる。

A.5 フレッシュコンクリート試料に添加する水の量    

フレッシュコンクリート試料に添加する水の量は、次の式  (1)及び式(2)によって計算し、四捨五入によって 1g 単位で整数に丸める。

W a = W s × ( D m − 1 )    ・・・(1)
W s = (M s × W)/ M ・・・(2)

ここに
W a :フレッシュコンクリート試科に添加する水の量 (g )
W s :フレッシュコンクリート試科中の水の質量 ( g )
D m :フレッシュコンクリート試料中の水の希釈倍率
M s :フレッシュコンクリート試料の質量(g)
W : 配合による 単位水量 (kg/m 3 )
M   : 配合によって求めたコンクリー トの単位容積質量  (kg/m 3 )

A.6 フレッシュコンクリート試料の希釈方法     

フレッシュコンクリート試科の布釈方法は、次による。

a) フレッシュコンクリート試科をはかりとる。フレッシュコンクリート試料は、かくはん容器に直接はかりとることが望ましい。

b) フレッシュコンクリート試料に A.5 で求めた規定量の水を加えかくはんする。かくはんは、フレッシュコンクリート試科中のセメントペーストと水とが十分に混ざり合い均質となるまで行う。

1 回目のかくはんが終了したらかくはん容器を静置し粗骨材 が 完全に沈降するのを待ち、この後、2回目のかくはんを行う。 2 回目のかくはんが終了したらかくはん容器を静置し粗骨材が完全に沈降するのを待つ。

なお、普通骨材を用いたコンクリートを試験する場合、かくはん容器をおよそ 5分間静置すれば、粗骨材が完全に沈降するとみなしてよい。

A.7 懸濁水及びモルタル分の採取並びに試料ろ液の抽出方法  

希釈したフレッシュコンクリート試科からの試科ろ液の抽出は、次による

a) 希釈したフレッシュコンクリート試料の上部から懸濁水及びモルタル分の必要量を採取する。

b) 採取した懸濁水及びモルタル分から試料ろ液を抽出する。試料ろ液を抽出る方法は、次のいずれかとする。

なお、吸引ろ過によって試料ろ液を得るときに長い時間を要する場合には、ろ液が減圧環境下において蒸発し濃縮する可能性がある。また、環境温度が高いと蒸発が促進されるため、吸引ろ過以外の抽出方法をとることが望ましい。

1) 吸引ろ過
2) 加圧ろ過(圧搾)
3) 遠心分離



6.9.3 コンクリートの強度試験の総則


(a) コンクリートの強度試験には、調合管理強度の管理のための試験、型枠取外し時期を決定するための試験及び構造体コンクリートの圧縮強度を管理するための試験の 3 種類があり、それぞれの強度試験の回数は、製造工場ごとにコンクリートの品質のレペル及び品質変動状況等を勘案して「標仕」6.9.3 (a)のように定めている。

また、平成 25年版「標仕」では、軽量コンクリートも普通コンクリー トと同じ頻度で試験を行っても十分な品質管理が行えるとの判断から、普通コンクリートと同じ頻度で強度試験を行うことに変更された。


(b) コンクリートの強度試験の具体的方法として、 1 回の試験に用いる供試体の個数及び試料採取の方法、供試体の作製方法、養生方法及び養生温度並びに圧縮強度試験方法について「標仕」6.9.3 (b)では、次のように定めている。

(1) 1 回の試験の供試体の個数及び試料採取の方法

(i) 1 回の試験の供試体数は、「標仕」表 6.9.2 に示された「調合管理強度の管理試験用」、「型枠取外し時期の決定用」、「構造体コンクリートの圧縮強度推定用」等、試験の目的に応じてそれぞれ 3個必要である。

なお、構造体コンクリートの圧縮強度の推定試験 は、「標仕」6.9.5 に記されているように、現場水中養生を行って材齢 28日で行う推定試験と、現場封かん養生を行って材齢  28日を超え 91日以内で行う推定試験の 2種類がある。

なお、使用するセメントの種類やコンクリートの打込み・養生時期等によって、材齢 28日では所定の圧縮強度が得られないことが懸念される場合は、材齢 28日で推定試験を行うための供試体のほかに、材齢 28日を超え 91日以内で推定試験を行うための供試体を別途用意しておくとよい。

ただし、供試体の採取時期及びその方法は、調合管理強度の管理試験用とその他の試験用とで異なるので注意しなければならない(表6.9.2 参照)。


(ii) 「構造体コンクリートの圧縮強度推定用」の場合は、「標仕」 6 .9. 3 (a) の量を 1 回の試験ロットとし、この中から適切な間隔をあけて3台の運搬車を選び、各運搬車からコンクリート試料を採取して供試体を1 個ずつ合計  3 個作製する。1 回の強度試験にはこの 3個を使用する。  例えば、1 日の打込み量が 150m 3 の場合は、0 〜50m 3 、 50〜100m 3 、100〜150 m 3 のそれぞれ中程の連搬車から試料を採取し、供試体を1 個ずつ、合計 3 個作製することになる。「型枠取外し時期の決定用」も上記「構造体コンクリートの圧縮強度推定用」 と同様の方法で 3個の供試体を作製し、1 回の試験にこの 3個の供試体を使用する。

ただし、「調合管理強度の管理試験用」の場合は、「標仕」6.9.3 (a)の量を 1回の試験ロットとし、この中の任意の運搬車を1 台選び、この運搬車からコンクリート試料を採取して同時に3個の供試体を作製し、これを1 組として1 回の強度試験を行う(表6.9.2 参照)。

「標仕」に基づき、1 日の普通コンクリー トの打込み量が 270m 3 の場合の、供試体の採取例を表 6.9.2 に示す。


表 6.9.2  供試体の採取例
表6.9.2_供試体の採取例.jpg


(2) 供試体の作製方法

供試体は、JIS A 1132(コンクリート強度試験用供試体の作り方 )に基づいて工事現場で作製する。コンクリートを詰め終えてから 16 時間以上 3日以内に脱型し、「標仕」6.9.3 (b)(3)に規定される試験の目的に応じた養生方法で養生を行う。ただし、現場封かん養生を行う場合は、6.9.3 (b)(3)(?A) ?@から?Bまでを参考にして行う。

なお、平成 25年版「標仕」ではコンクリートを打ち込んでから脱型するまでの時間が JIS A 1132に準拠して変更されたので注意しなければならない。

また、供試体を作製したのち、すぐに、直射日光や風が当たらない屋内に静置し、脱型するまでの 24 時間から 48 時間の間はコ ンクリート表面が乾燥しないように湿布やフィルム等で覆うようにすることが重要である。

JIS A 1132の抜粋を次に示す。

 JIS  A  1132 : 2006  

4 圧縮強度試験用供試体

4.1 供試体の寸法   

供試体は、直径の 2倍の高さをもつ円柱形とする。その直径は、粗骨材の最大寸法の 3倍以上、かつ、100mm以上とする。

参考)供試体の直径の標準は、100mm、125mm、150mmである。粗骨材の最大寸法が 40 mmを超える場合には、40mmの網ふるいでふるって 40mmを超える粒を除去した試料を使用し、直径150mmの供試体を用いることがある。ここで、40mmの網ふるいとは、JIS Z 8801-1に規定する公称目開き 37.5mmの網ふるいのことをいう。


4.2 器 具   
器具は、次による。

a) 型枠は、非吸水性でセメントに侵されない材料で造られたものとする。

b) 型枠は、供試体を作るときに漏水のないものとする。

参考
幾つかの部品からなる型枠の場合、その継ぎ目には油土、硬いグリースなどを薄く付けて組み立てる。

c) 型枠は、所定の供試体の精度が得られるものとする。

d) 型枠の内面には、コンクリートを打ち込む前に鉱物性の油又は非反応性のはく離材を薄く塗るものとする。

e) 突き棒を用いて締め固める場合、突き棒は、先端を半球状とした直径16mm、長さ約 500〜600mmの丸鋼とする。

f) 内部振動機によって締め固める場合振動機は JIS A 8610に規定されるものとする。振動機の棒径は,供試体の最小寸法の1/4以下(1)とする。

注(1)  φ100mmの 供試体の場合、棒径28mmを用いてもよい。

g) 振動台式振動機によって締め固める場合、振動機は JIS A 8611に規定されるものとする。

備考 振動台式振動機又はその他の方法によって締め固める場合、対象となるコンクリート試科を十分締め固めることのできる性能のものとする。


4.3 コンクリートの打込み

4.3.1 コンクリートの詰め方  

コンクリートは、2層以上のほぽ等しい層に分けて詰める。各層の厚さは160mmを超えてはならない。


4.3.2 突き棒を用いる場合

各層は少なくとも1000mm 2 に1回の割合で突くものとし、すぐ下の層まで突き棒が届くようにする。突いて材料の分離を生じるおそれのあるきとは、分離を生じない程度に突き数を減らす。



4.3.3   内部振動機を用いる場合  

内部振動機はコンクリート中に鉛直に挿入する。最下層を締め固める場合は、型枠底面から約 20mm上方までの深さまで突き入れる。最下層以外を締め固める場合は、すぐ下の層に 20mm程度差し込むようにする。

振動締固めは、大きな気泡が出なくなり、大きな骨材の表面をモルタル層が薄く覆うまで続ける。その後、振動機によってできた穴を残さないようにゆっくりと引き抜く。


4.3.4  振動台式振動機を用いる場合

型枠は振動台に取り付けるか、強固に押し当てる。振動締同めは、大きな気泡が出なくなり、大きな骨材の表面をモルタル層が薄く覆うまで続ける。振動のかけすぎは避けなければならない 。


4.3.5 上面のならし

型枠の上端より上方のコンクリートは取り除き、表面を注意深くならす。

備考
キャッピングを行う場合は、コンクリート上面が、型枠頂面からわずかに下になるようにする。


4.4 供試体の上面仕上げ

4.4.1 キャッピングによる場合
キャッピングは、次による。

a) キャッピング用の材料は、コンクリートによく付着するもので、かつ、コンクリートに悪影響を与えるものであってはならない。

b) キャッビング層の圧縮強度は、コンクリートの予想される強度より小さくてはならない。

c) キャッピング層の厚さは、供試体直径の2%を超えてはならない。


4.4.2  研磨による場合
研磨によって上面を仕上げる場合は、コンクリートに悪影響を与えないように行う。

4.4.3   アンボンドキャッピングの場合    
供試体打込み時に硬化後の平面度(2)が 2mm以内になるように仕上げなければならない。この供試体を強度試験に適用する場合には、JIS A 1108 の附属書による。

注(2) ここでいう平面度は、平面部分の最も高い所と最も低い所を通る二つの平行な平面を考え、この平面間の距離をもって表す。


4.5 供試体の形状寸法の許容差
供試体の形状寸法の許容差(3) は、次による。

a) 供試体の寸法の許容差は、直径で 0.5 %以内、高さで  5 %以内とする。

b) 供試体の載荷面の平面度は、直径の0.05%以内とする。ただし、JIS  A 1108 の附属書による場合の上面は除く。

c) 載荷面と母線との間の角度は、 90 ± 0.5゜とする。

注(3) 検定された型枠を用いて供試体を作る場合には、 a) 、 b) 及び c) に示した各項目の測定は省略してもよい。


附属書 1(参考) コンクリートの打込み方法

序文 この附属書(参考)は、コンクリートの打込み方法の標準を示すものであり、規定の一部ではない。

1. 圧縮強度試験用供試体の場合

1 .1  突き棒を用いる場合

コンクリートは 各層ごとに、型枠の軸にほぼ対称となるように入れ、その上面を突き棒でならす。

直径150mm、高さ300mmの 供試体の場合は、 3層に分けて詰め、各層を突き棒で25 回突く。直径の150mm以外の供試体については、各層の厚さを 100〜150mmとし、上面積 700mm 2 について 1 回の割合で突く。

突き終わった後、型枠側面を木づち(槌)で軽くたたいて、突き棒によってできた穴がなくなるようにする。


1.2 内部振動機を用いる場合   

直径100 ~ 200mmの供試体に対しては、コンクリートをほぽ等しい2層に分けて詰める。各層ごとに、型枠の軸lにほぼ対称となるようにコンクリートを入れ、振動機を用いて締め固める。

振動機は、1層につき上面積約 6000mm2について1回の割合で差し込む。 上層のコンクリートは、振動機を差し込む際にモルタルがあふれ出るほど詰め込まない。振動機を抜き終わったら型枠側面を木づち(槌)で軽くたたく。


1.3 振動台式振動機を用いる場合   

型枠の軸にほぼ対称になるようにコンクリートを詰め、振動を与えて締め固める。


JIS A 1132: 2006



(3) 養生方法及び養生温度

(i) 供試体の養生方法は標準養生、現場水中養生及び現場封かん養生の3種類で、表 6.9.2 により、調合管理強度の管理試験用供試体の場合は  20 ± 2℃の水中養生(標準養生)とする。構造体コンクリートの強度推定用供試体の場合は、養生温度をできるだけコンクリートを打ち込んだ構造体に近い条件にした現場水中養生及び現場封かん養生とする。また、型枠取外し時期決定用の供試体の場合は、現場水中養生とする。

解説
標準養生の規定が、20 ± 2℃の水中養生であるのは、JIS A 1132(コンクリート強度試験用供試体の作り方)による。JASS 5(2015年)によると、JIS A 0203により「温度を 20 ±3 ℃に保った水中、湿砂または飽和水蒸気中で行う供試体の養生」という用語の定義がある。


(ii) 現場封かん養生は次に示す方法を参考にして行う。

?@ JIS A 1132を参考に、コンクリート試料を型枠へ詰め込み、締め固めたのち、コンクリートの水分が逸散しないようにラッピングフィルム等で上面を密封する。

?A 屋外の直射日光の当たらない場所に速やかに移動・静置し保管する 。

?B 鋼製型枠を使用する場合は、コンクリートを詰め終わってからおおむね 16時間から 72時間の間に脱型する。その後、再度ラッピングフィルム等で全面を密閉し、屋外の直射日光の当たらない場所に強度試験を行うまで静置・保管する。

なお、軽量型枠を使用する場合は、コンクリート試科を型枠に詰め込んでラッピングフィルム等で密閉したままの状態で、強度試験を行うまで屋外の直射日光の当たらない場所に静置・保管する方法もあるが、この方法はあくまでも簡易的な方法であり、「標仕」では、基本的には鋼製型枠を使用する場合と同様の手顛で行うことが求められている。

(iii) 現場水中養生の場合は、直射日光が当たらない屋外に水槽を設置し、型枠脱型後直ちに水槽に浸漬し、強度試験を行うまで保管する。

なお、現場水中養生における養生温度は、水槽内の最高及び最低の水温を毎日測定し、養生期間中の全測定値を平均した値とする 。


( 4 )   圧縮強度試験方法

圧縮強度試験は、 JIS A 1108(コンクリートの圧縮強度試験方法)によって実施し、1 回の 試験結果の平均値は、「標仕」6.9.1 式に基づいて3 個の供試体の圧縮強度から求める。また、3 回の試験結果の平均値は、「標仕」6.9.2 式に基づいて 3 回の圧縮強度の平均値から求 める。

JlS  A 1108の抜粋を次に示す。

JlS  A 1108 :  2006

3. 供試体 
供試体は、次のとおりとする。

a) 供試体は、JIS A 1132によって作製する(1)。 また、 供試体は、所定の養生が終わった直後の状態で試験が行えるようにする(2)。

注(1) 試験を行う供試体の材齢が指定されていない場合には、1 週、4 週及び13週、又はそのいずれかとする。

注(2) コンクリートの強度は、供試体の乾燥状態や温度によって変化する場合もあるので、養生が終わった直後の状態で試験を行う必要がある。


b) 損傷又は欠陥があり、試験結果に影響すると考えられるときは、試験を行わないか、又はその内容を記録する。

4. 装 置 
装置は、次のとおりとする。

a) 試験機は、JIS B 7721 の 7.(試験機の等級) に規定する1 等級以上のものとする。

b) 上下の加圧板は鋼製とし、圧縮面は磨き仕上げとする(3)。

注(3) 加圧板は、JIS B 7721 附属書 B に示す。


5. 試験方法    

試験方法は、次のとおりとする。

a) 直径及び高さを、それぞれ 0.1mm及び 1mmまで測定する。 直径は、供試体高さの中央で、互いに直交する2方向について測定する。

b) 試験機は、試験時の最大荷重が指示範囲の 20〜100%となる範囲で使用する。同一試験機で指示範囲を変えることができる場合はそれぞれの指示範囲を別個の指示範囲とみなす。

参考)試験時の最大荷重が指示範囲の 90%を超える場合は、供試体の急激な破壊に対して、試験機の剛性などが試験に耐えうる性能であることを確認する。

c) 供試体の上下端面及び上下の加圧板の圧縮面を清掃する。

d) 供試体を、供試体直径の1%以内の誤差で、その中心軸が加圧板の中心と一致するように置く。

e) 試験機の加圧板と供試体の端面とは、直接密着させ、その間にクッション材を入れてはならない。ただし、アンボンドキャッピングによる場合を除く[アンボンドキャッビングの方法は、附属書1(規定)による。]。

f ) 供試体に衝撃を与えないように 一様な速度で荷重を加える。 荷重を加える速度は、圧縮応力度の増加が毎秒 0.6 ± 0.4 N/mm 2 になるようにする。

g) 供試体が急激な変形を始めた後は、荷重を加える速度の調節を中止して、荷重を加え続ける。

h) 供試体が破壊するまでに試験機が示す最大荷重を有効数字3けたまで読み取る。


6. 計 算    

圧縮強度は、次の式によって算出し、四捨五入を行って有効数字3 けたに丸める。

fc = P / ( π × ( d / 2 ) 2 )

fc :圧縮強度 (N/mm 2 )
P: 5.h) で求めた最大荷重 (N)
d: 5.a) で求めた供試体の直径 (mm)


附属書1(規定) アンボンドキャッピング

1. 適用範囲  

この附属書は、ゴムパッドとゴムバッドの変形を拘束するための鋼製キャップを用いて、圧縮強度が10 ~ 60N/mm 2 の 圧縮強度試験用供試体のキャッピング方法について規定する。

2. 一般事項  

この附属書に規定のない事項については、本体による。


3. 用語の定義

a) 鋼製キャップ    

コンクリート供試体の上端の一部を覆うとともに、圧縮強度試験時に鋼製キャップ内に挿入したゴムパッドの水平方向水に対する変形を拘束できる金属製のキャップ。

b) ゴムパッド

鋼製キャップ内に挿入して、コンクリート供試体の打設面の凹凸を埋めるため にクロロプレン又はポリウレタンによって作られた円板状のゴム。


4. 試験用器具

4.1 鋼製キャップ
焼入れ処理を行った S45C 鋼材、SKS鋼材などを用い、圧縮試験機と接する面の平面度が、0.02mm以内であることを確認したものとする。また、鋼製キャップの寸法は、附属書1図1を参照して附属書1 表1 に示す値とする。


附属書1図1鋼製キャップ.jpg
附属書1図1  鋼製キャップ

附属書1表1  鋼製キャップの寸法
附属書1表1鋼製キャップの寸法.jpg

4.2   ゴムパッド     
ゴムパッドの外径は、附属書1表1 に示す鋼製キャップの内径とほぼ等しいもので、厚さは 10mmのものとする。また、ゴムパッドの品質は附属書1表2 による。

附属書1表2 ゴムパッドの品質
附属書1表2ゴムパッドの品質.jpg


4.3 ゴム硬度計
ゴム硬度計は、JIS K 6253 に規定するタイプ A デュロメータを用いる。タイプ A デュロメー タの一例を、附属書1図2 に示す。

附属書1図2タイプAデュロメーターの一例.jpg
附属書1図2    タイプA デュロメー タの一例


5. ゴムパッドの硬さ

5.1 測定方法    
ゴムパッドの硬さの測定方法は、次による。

a) ゴムパッドを鋼製キャップに挿入した状態で、パッドの外周から中心点に向かって約20mmの位置の 3か所を測定位置とする。 このとき、各測定位置はそれぞれ等間隔に選定するものとする。

b ) それぞれの測定位置においてゴム硬度計を垂直に保ち、押針がゴムパッドに垂直になるように加圧面を接触させる。

c) ゴム硬度計をゴムパッドに押し付け、5秒後の指針の値を読み取る。 このとき、押しつける力の目安は 8 〜10 N程度とするのがよい(1)。

注(1) ゴムパッドの硬さの測定には、オイルダンパを利用した定荷重装置を用いると安定した試験値が得られる。

d)  3個のゴム硬さの測定値から平均値を求め、これを整数 2けたに丸めてゴム硬さの試験値とし、この値と測定時のゴムパッドの温度(2)とを、次の式に代入して、20℃でのゴム硬さに換算する。

K 20 = 1.08 × T 0.03 × Ki 0.96

ここに、
K 20 : 温度 20℃でのゴム硬さの換算値
T:測定時のゴムパッドの温度(℃)
Ki : ゴム硬度計の読み

注(2) ゴムパッドの硬さの測定値は、ゴムパッドの温度によって相違する。ゴムパッドの温度を直接測定することができない場合で、ゴムパッドの温度と室温とに差胃がないと考えられるときには、室温を計算に用いてもよい。


5.2 使用限度の判定       
未使用時の硬さに対して、測定した硬さが 2 を超えて低下した場合は、新しいものと交換しなければならない。


6. キャッピングの方法

6.1 準 備     
新しいゴムパッドを使用する場合は、附属書1 図1 に示すように鋼製キャップの内面にゴムパッドを挿入し、鋼製キャップとゴムパッドとの間に空気が残らないよう、150kN程度の荷重を 2〜3回載荷する 。

6.2 方 法   
供試体の上面がゴムパッドに接するように鋼製キャップをかぶせる。 コンクリート供試体の側面と鋼製キャップの内側面とが接することのないよう、鋼製キャップの位置を調整する。

JIS  A 1108:2006


(5)   試験の目的

供試体の養生方法、試験の材齢、1 回の試験の供試体の個数及び試験の回数は、「標仕」表 6.9.2 による。ただし、寒中コンクリートの場合は「標仕」表 6.11.1による。


6.9.4 調合管理強度の管理試験


(a) 調合管理強度の管理に使用する供試体と構造体コンクリートの圧縮強度の推定に使用する供試体はいずれも同様のものであるが、採取方法や養生方法が異なるため判定基準も異なる。

平成 22年版「標仕」からは、使用するコンクリートを原則 I 類コンクリートとし、コンクリート発注時の呼び強度の強度値を「標仕」6.3.2 で定める調合管理強度以上としている。これにより、発注したコンクリートの強度の管理試験は、JIS A 5308(レディー ミクストコンクリート)の 4.1 a) の「購入者が指定した呼び強度の強度値」を「調合管理強度」に読み替え、同 4.1a) 1) 及び 2) の品質規定に整合させている。

1 回及び 3 回の試験結果の平均値は、「標仕」6.9.3 (b)(4)に示される 6.9.1 式及び 6.9.2 式によって求める。

なお、調合管理強度の管理試験に使用する供試体は、「標仕」6.9.3(b)(1)(ii) 及び「標仕」 6.9.3(b)(3)(i) 並びに「標仕」表  6.9.2 に示すものを使用し、他の供試体と区別して使用するように注意する。


(b) 試し練りの調合強度の判定基準については、 JASS 5 にも規定されておらず、現状では明確な判断基準はない。ただし、(一社)日本建築学会「コンクリートの調合設計指針・同解説」において「(試し練り試験の)圧縮強度試験の結果の判断基準については、圧縮強度のばらつきを考慮して所定の材齢において調合強度の0.95倍以上が得られることを目安とすればよい」と記載されており、行う場合にはこれを参考にするとよい。


6.9.5 構造体コンクリート強度の推定試験


(a)「標仕」によれば、構造体のコンクリート強度は「標仕」  6.2.2(c)(1) に規定される「材齢 91日において設計基準強度以上」でなければならないが、 6.2.2 (c) に記したように、実際のコンクリート工事において構造体のコンクリート強度をコア供試体で試験することは、構造体に損傷を与え、かつ、修復が必要となるため実施が困難である。そのため、「標仕」6.2.2(c)(2)に基づいて、「標仕」6.9.5(a)では構造体のコンクリートと同じような強度発現をすると考えられる方法で養生した次の 2種類のうちいずれかの供試体を用い、その圧縮強度から構造体のコンクリート強度を推定し、品質管理を行っている。

一つは、コンクリートを打ち込んだ構造体に近い温度条件の水中で養生(現場水中養生)した供試体を用いて、従来と同様材齢 28 日で推定試験を行う方法である。もう一つは、使用するセメントの種類やコンクリートの打込み・養生時期等によって材齢 28日では所定の圧縮強度が得られないことが推定される場合に、現場封かん養生した供試体を用いて材齢 28日を超え 91日以内で推定試験を行う方法である。

平成 22年版「標仕」までは、基本として材齢 28 日で推定試験を行い、その結果圧縮強度が判定基準を満足しなかった場合に、次の判定方法として材齢 28日を超え材齢 91日以内の推定試験を用意していた。一方、平成 25年版「標仕」では、このいずれかを満足すれば合格することとなった。

(1) 現場水中養生した供試体を用いて材齢 28 日で行う場合の試験結果の判定は、材齢 28日までの平均気温(毎日、養生水槽の水温の最高及び最低を測定し、養生期間中の全測定値を平均した値)が 20℃ 以上の場合と未満の場合で区別し、次の (i) 又は (ii) のいずれかの基準に満足すれば合格となる。

(i) 平均気温が20℃ 以上の場合は、 1回の試験結果( 3個の供試体の平均値)が調合管理強度以上である。

(ii) 平均気温が20℃ 未満の場合は、 1回の試験結果( 3個の供試体の平均値)から 3N/mm 2 を減じた値が、設計基準強度以上である。

この試験は、「標仕」6.9.4 に規定される JIS A 5308(レディー ミクストコンクリート)に準じた保証条件と異なっているが、 2009 年に改定された JASS 5 の構造体コンクリートの品質管理方法の考え方に基づき、平成 22 年版「標仕」のコンクリー ト調合設計で取り入れられた構造体強度補正値(S)と調合管理強度の考え方に基づく品質保証の方法であり、供試体の養生方法や養生期間中の平均気温、使用するセメントの種類等各種条件が考慮されている。

(2) 平成 22年版「標仕」では、上記(1)の (i) 及び (ii) を満足しなかった場合に、現場封かん養生を行った供試体を使用して、材齢 28日の圧縮強度の平均値が設計基準強度の 0.7 倍以上であり、かつ、材齢 28日を超え 91日以内の材齢の圧縮強度の平均値が設計基準強度に 3 N/mm 2 を加えた値以上であれば合格としていた。これは、昭和 56年建設省告示第1102号の第1第二号のコンクリートの強度の規定、「コンクリートから切り取ったコア供試体又はこれに類する強度に関する特性を有する供試体について強度試験を行った場合に、材齢が 28日の供試体の圧縮強度の平均値が設計基準強度の数値に 7/10 を乗じた数値以上であり、かつ、材齢が 91日の供試体の圧縮強度の平均値が設計基準強度の数値以上であること。」等に基づくものであった。

しかし、近年では、強度発現の極めて遅いセメントを用いて管理材齢を最も長く ( 91日程度)取った場合を除けば、材齢 28日の圧縮強度が設計基準強度の 0.7 倍を下回るような状況にほとんどの場合至らず、JASS 5 でも 1997年の改定でこの条件が削除されている。これらのことから、平成25年版「標仕」では、この条件が判定基準から削除された。

(3) 国土交通省大臣官房官庁営繕部では、官庁営繕工事を対象に、平成 23年 5月から平成 24年 9月に打ち込まれた構造体コンクリートの材齢 28日の現場水中養生供試体と現場封かん養生供試体の圧縮強度の関係について調査を行った。その結果、図6.9.2 に示すように、設計基準強度 18 ~ 36N/mm 2 で普通ポルトランドセメントを使用したコンクリートの材齢 28日の現場封かん養生供試体の圧縮強度は、同じく材齢 28日の現場水中養生供試体の圧縮強度の 0.94倍( 平均値 )で、95%の信頼限界では 0.82倍に相当することが確認されている。

前記のように現行では告示 1102号第1第二号で「材齢 28日の圧縮強度が設計基準強度の 0.7 倍以上」であることが規定されているため、建築主事から試験結果を要求されるような場合には、「標仕」6.9.5(a)(2)の規定にかかわらず、現場封かん養生した供試体を用いて材齢 28日で行った圧縮強度試験の結果が設計基準強度の 0.7 倍以上であることを示さなければならない。

しかし、現場封かん養生した供試体の材齢 28日の圧縮強度試験結果がない場合でも、現場水中養生した供試体の材齢 28日の圧縮強度試験結果があれば、図6.9.2 の調査結果を基に、現場水中養生した供試体の圧縮強度試験結果から現場封かん養生した供試体の圧縮強度を推定し、その結果に基づいて告示の規定を満足していることを提示し判断を仰ぐ方法もある。ただし、上記調査結果は普通ポルトランドセメントを使用した場合のものであり、その他のセメントを使用する場合には図6.9.2 の相関関係は適用できないので、「標仕」 6.9.5(a)(2)の規定にかかわらず、現場封かん養生した供試体を用いて材齢 28日の試験を行うよう計画することが望ましい。


図6.9.2現場封かん養生供試体と現場水中養生供試体の材齢28日圧縮強度の関係.jpg
図6.9.2 現場封かん養生供試体と現場水中養生供試体の材齢 28日圧縮強度の関係


(b) 平成 22年版「標仕」までは、材齢 28日を超え 91日以内に実施した構造体のコンクリート強度の推定試験結果が、その判定基準を満足せず不合格となった場合に行う処置を「標仕」6.10.6 (c)(平成 25年版「標仕」6.9.5 (b)に相当)で規定していた。しかし、平成 25年版「標仕」では、「標仕」6.9.5(a)に規定される推定試験で不合格になった場合に行う処置に改められた。供試体の採取は、数多く搬入されるトラックアジテータの内から数台を抜き取って行うものであり、必ずしも構造体を代表するものになるとは限らない。そこで、不合格になった場合には、構造体からコア供試体を抜き取り JIS A 1107(コンクリー トからのコアの採取方法及び圧縮強度試験方法)等監督職員が承諾した方法に従って、必要な圧縮強度が得られているか確認することになっている。

コア供試体の圧縮強度は採取する位置によって異なるため、コア供試体の抜取り位置の承諾に当たっては設計担当者の意見を聞いたうえで、使用したコンクリートを代表する位置を定める。 その他の圧縮強度の推定方法としては, 超音波伝播速度を測定したり、JIS A 1155(コンクリートの反発度の測定方法)によってリバウンドハンマー(シュミットハンマー)の反発度を測定する方法等があるが、コア供試体を用いた試験に比べると精度が悪いので、適用に際しては十分な注意が必要である。


6.9.6 構造体コンクリートの仕上り及びかぶり厚さの確認

(a) 部材の位置・断面寸法、表面の仕上り状態、仕上りの平たんさ、打込み欠陥部、ひび割れ及びかぶり厚さは、構造体コンクリー トに求められる所要の強度や耐久性等の性能を間接的に表す重要な指標である。これまでの「標仕」では、型枠作業でコンクリート打込み前に型枠の位置や寸法等の確認を行い、不具合がある場合は修正等を行うことになっていた。平成 25 年版「標仕」は、  更に出来上った構造体に対する検査が新たに盛り込まれた。これに伴って、あらかじめ、試験・測定の方法、判定の基準、実施時期、サンプリング方法や数及び検査に適合しなかった場合の処置等を、受注者等や設計担当者等と協議して定めておくことが必要となった。

なお、仕上り状態やかぶり厚さの確認作業は、一般的には受注者等自身が行う場合と受注者等が第三者に委託して行う場合のいずれかであるが、第三者が行う場合は、上記協議の際に第三者のこれまでの作業実績、資格・技能等を確認し、不十分と考えられる場合は、受注者等に十分な実績、資格・技能等を有する第三者を選定するよう指示することが重要である。

(1) 確認・検究の時期は、せき板や支柱等を取り外したあとが一般的で、内外装の仕上工事が始まるまでに行わなければならない。 次の測定方法、試験方法等と同様、あらかじめ受注者等と協議して時期を明確に定めておくことが重要である。また、報告は、判定基準に基づいて不適合となった場合だけでなく、適合した場合にも試験・測定結果とともに報告させることが重要である。

なお、不適合の場合には、設計担当者と打合せを行うことが必要である。

(2) コンクリート部材の位置及び断面寸法は、6.2.5 でも記しているように、一般的には次の (i)から(iii)の要求条件から所定の許容差の範囲になければならず、「標仕」では 6.2.5の表6.2.3でこの許容差の値を定めている 。

(i)   構造体としての耐力及び耐久性の確保

(ii) 仕上げ二次部材又は設備等の納まり上の要求

(iii) 美観上の要求

測定方法も 6.2.5(a)(2)に記しているように、特記された部材又はコンクリート打込み後に型枠の変形が生じたと見られる部分等を対象に、基準墨からスケール等を用いて測定する方法が一般的である。測定方法の詳細については、6.2.5(a) (2)を参考にするとよい。

許容値に適合しない場合は、受注者等に、試験・測定結果等とともに、直ちに報告させることが重要である。

(3) コンクリート部材表面の仕上り状態については、コンクリートの打放し仕上げの場合には、「標仕」6.2.5 (b)(1)(i) の表 6.2.4 の種別に応じた「表面の仕上り程度」が目安として定められており、これを目視等で確認することとなる。打放し仕上げ以外の場合は、「標仕」6.2.5 (b)(1)(ii)に規定されるように、ポリマーセメントベースト等を充填した型枠セパレーターの穴や砂じま、へこみ等の軽微な補修部分、突起部を取り除いた部分等を目視や触診等で確認し、内外装仕上工事や設備工事等への支障の有無を確認する。支障がある場合には、速やかに報告させることが重要である。

(4) コンクリート部材の平たんさについて、「標仕」では 6.2.5(b)(2)の表 6.2.5のコンクリー トの内外装仕上げに応じた「適用部位による仕上げの目安」が定められている。測定方法としては、下げ振りやトランシット、レベル、水糸、スケール等を使用して、コンクリート面の最大、最小を測定する方法等が一般的であるが、その他、JASS5 で規定している   JASS 5 T-604(コンクリートの仕上がりの平たんさの試験方法)や日本床施工技術研究協議会が定めている「コンクリー卜床下地表層部の諸品質の測定方法、グレード」 (2006 年4月 ) 等が参考になる。「コンクリート床下地表層部の諸品質の測定方法、グレード」には、品質グレードの分け方も規定さ れているので 参考にするとよい。

平たんさが「標仕」表 6.2.5の標準値を超えた場合は、直ちに報告させることが重要である。

(5) 空洞や豆板、打継ぎ不良、コールドジョイント、気泡等の打込み欠陥は、コンクリートの耐力、耐久性に与える影響が大きい。測定・確認方法としては、最初に目視検査を行い、異状が懸念される箇所を必要に応じてはつりで確認するのが一般的である。

なお、目視検査の場合は、測定者の判定基準が必ずしも明確でないため、なるべく立ち会うことが望ましい。

(6) ひび割れについては、支保工で支えている状態では正しい確認ができないので、検査は支保工を取り外したあとに行うことが重要である。試験・測定方法としては、 目視で数を計るとともに、その幅や長さ、深さをクラ ックスケールやノギスで測定するのが一般的であるが、必要に応じて金づち等ではつって深さを測る場合もある。この場合もなるべく立ち会うことが望ましい。 ただし、幅を評価指標とし、耐久性や防水性に基づく補修の可否が判断基準になる場合が多い。例えば、(公社)日本コンクリート工学会の「コンクリートのひび割れ調査・補修・補強指針」では、防水性が要求される場合には 0.05mm以下、防水性は要求されないがかぶり厚さや表面被覆の有無等から鉄筋の錆を発生させやすいなど耐久性から見た条件が厳しい場合(塩害・腐食環境下)には 0.2mm以下、 耐久性から見た条件が普通の場合(一般屋外環境下) 0.3mm以下、耐久性から見た条件が緩やかな場合(上中・屋内環境下)0.4mm以下、としているので、参考にするとよい。

(7) かぶり厚さについては、まず最初に目視によってコンクリート表面の外観検査を行い、豆板や錆汁の漏出の有無、コンクリー ト表面の鉄筋模様の有無、垂直部材の立上り鉄筋の位置等から、かぶり厚さ不足の兆候がないことを確認するとともに、かぶり部分のコンクリートが密実で、有害な打込み欠陥がないことを確認することが重要である。かぶり厚さの不足が懸念される場合や不足の兆候が認められる場合には、電磁誘導法やレーダー法、超音波法、X 線法等の非破壊試験、若しくはドリル穿孔等の微破壊試験によってかぶり厚さの検査を行う。近年、非破壊試験の精度が急速に向上しており、JASS  5 では、2009 年の改定で検査方法、検査時期・頻度及び判定基準を含むかぶり厚さの検査(11.10 構造体コンクリートのかぶり厚さの検査)が導入され、電磁誘導法を用いた JASS 5 T-608(電磁誘導法によるコンクリート中の鉄筋位置の測定方法)が規定されているので、非破壊検査を実施する場合には、判定基準の考え方を含めこれらを参考にするとよい。

なお、これらの確認・検査の時期についても、あらかじめ受注者等と協議して定めておくことが重要である。

表 6.9.3 に構造体コンクリートの仕上り及びかぶり厚さの検査方法の一例を記す。

表 6.9.3   仕上り及びかぶり厚さの検査方法(一例)
表6.9.3仕上り及びかぶり厚さの検査方法(一例).jpg


(b) (a)で確認を行った結果、部材の位置・断面寸法、表面の仕上り状態、仕上りの平たんさ、打込み欠陥部、ひび割れ及びかぶり厚さの精度が設計図書に定められた許容値に適合しない場合は、該当する部材のすべて及び 一部を補修することになるが、はつり等を行う場合は、構造体を傷めるおそれがある。あらかじめ設計担当者と打合せのうえ、他の部分への影響を最小限にして、その部材の耐久性を確保するように補修方法を定めて受注者等に指示しなければならない。また、補修完了後は、直ちに補修箇所の確認・検査を行わなければならない。

(1) 部材の位置及び断面寸法の精度が許容値に適合しない場合は、はつり等を行って補修することになるが、この方法は構造体そのものを傷めるおそれがあるので、受注者等や設計担当者と協議して、他の部分への影響を最小限にして、その部材の耐力及び耐久性を確保できる適切な補修方法を策定させ、提案させて了承後に補修を行わせる。

(2) 表面の仕上りが不適格の場合は、不適格な箇所に再度ポリマーセメントペースト等を追加し、基準に適合するよう丁寧にこて均しを行う。

(3) 平たんさは、仕上げの種類だけでなく、建物の規模や仕上げ面に要求される見ばえ等によって異なるので、ポリマーセメントモルタル等を使用した適切な補修方法を策定させ、提案させて了承後補修を行わせる。

(4) 空洞や豆板、打継ぎ不良、コールドジョイント、気泡等の打込み欠陥は、下記の豆板の補修方法等を参考に適切な補修方法を策定させ、提案させて了承後に補修を行わせる。


(i) コンクリートに生じた豆板の程度は 表6.9.4 を参考にして分類する。

表6.9.4 豆板の程度
表6.9.4豆板の程度.jpg


(ii) コンクリートの豆板の補修方法

?@ 硬練りモルタルの充填方法による場合

1) 表 6.9.4 のB 程度のものに適用する。

2) 健全部分を偽めないように不良部分をはつり、水洗いしたのち、木ごて等で1 : 2 の硬練りモルタルを丁寧に塗り込み、必要に応じて打継ぎ用接着剤を使用する。

3) はつり穴の深さは 30mm以上が望ましい。 浅いと充填部分にひび割れが入るなどして効果が望めない。

4) 充填後は急激な乾燥を防ぐ。

?A コンクリートの打直しによる場合

1)  表 6.9.5 のD又はC でもD の状態に近いものに適用する。

2) 砂利等でたたいて落ちるようなものが残らないように、密実なコンクリート部分まで十分はつり取る。

3) 露出した鉄筋は、図6.9.3のようにその周囲に最少 30mm以上の隙間をとる。

4) 穴の深さは少なくとも 100mm以上とする。

5) はつり取った開口部の上端は、図6.9.3 のようにコンクリートを打ち込む側が広くなるように約100mm以上の差をつける。

6) コンクリー トの打込み前には、必ず清掃・水洗し、既存コ ンクリート部分を湿潤にしておく 。

7) 打ち込むコンクリートは、硬練りコンクリートとして十分に締め固める。

8) 打ち込むコンクリートの量が多い場合は、沈降と収縮を少なくするために膨張材等を使用するとよい。


図6.9.3鉄筋が露出した場合の補修方法.jpg
図   6.9.3 鉄筋が露出した場合の補修方法

?B  表 6.9.4 のC 程度のものは、状況によりセメントペースト又はモルタルの注入を行う。

?C 柱下部等で鉄筋が多く、内部のコンクリートのはつりが困難な場合は鉄筋面まで露出させ、セメントガン吹付けあるいは注入(グラウト) 等の方法による。


(5) ひび割れは次のエポキシ樹脂を用いた補修方法等を参考に適切な補修方法を策定させ、提案させて了承後に補修を行わせる。

(i) エポキシ樹脂の使用上の注意事項

?@ エポキシ樹脂は種類も多く、硬化剤、希釈剤、充填剤等の配合によっていろいろな性状とすることができるので、補修の目的、施工条件等を十分検討して選定する。

?A コンクリート面は十分な表面強度をもつ必要があるので、油、ほこりの類は、ワイヤブラシ等で清掃する。また、コンクリート面は完全に乾燥していなければならない。

?B エポキシ樹脂は、10℃以下では硬化が著しく遅れ、接着強度が低下するので冬期の補修には十分注意する。

なお、炎天下の作業は硬化が早くなるので日除け等の養生が必要になる。

?C エポキシ樹脂をパテ状で使用する場合は、低粘度形のエポキシ樹脂プライマーを塗布する。

(ii) 注入補修方法

注入補修方法を体系的に示すと図6.9.4 のようになる。

図6.9.4_補修方法.jpg
図 6.9.4 補修方法

具体的な工法については、国土交通省大臣官房官庁営繕部「公共建築改修工事標準仕様書(建築工事編)」及び同監修「建築改修工事監理指針」の 4章[外壁改修工事]を参考にするとよい。


(6) かぶり厚さの不足が確認された場合も、上記(1)から(5)と同様、受注者等に適切な補修方法を提案させ、了承後に補修を行わせることが重要である。補修の方法は大別して2種類ある。 1 つは、新たに仮枠等を設けてコンクリートを増打ちする、あるいは母材であるコンクリートに用いられているものと同等以上の性能を有するセメントモルタルを使用して補修する方法で、この方法で補修を行った部材は、母材と補修材が一体化した鉄筋コンクリート造の部材と見なすことができる。

一方、ポリマーセメントモルタルやエポキシ樹脂モルタル等のコンクリート以外の材料を使用して補修する場合は、使用する材料の品質や強度及び防火上の性能と使用範囲で法令(平成13年国土交通省告示第1372 号及び平成12年建設省告示第 1399 号、他)上の条件が設けられており、補修部分の断面積は、部材断面の5%以下(ただし、母材と同等以上の強度を有し、架構の一部のみである場合には部材断面積の 30%以下)であることが想定されている。また、これらの材料を使用する場合には防火上支障のないものであることが求められており、防火上支障のないものの一例として、ポリマーセメント比が 4%以下で、かつ,補修部分の厚さが 20mm以下の場合がある。このほか、防火上支障のない補修材料・工法の具体的な選定方法については、独立行政法入建築研究所の建築研究報告 No.147「 鉄筋コンクリート造建築物のかぶり厚さ確保に関する研究 」等を参考にするとよい。

また、エポキシ樹脂モルタルはそれ自体が可燃性材料なので、亀裂や軽微な欠損部に充填する場合等、使用量の少ない軽微な補修では使用できるが、かぶりコンクリートとして部材表面等に塗布するような使用方法はできないので、注意しなければならない。


【解説】
なお、品確法においては、ポリマーセメントを用いた対応は認められていないので、注意が必要である。その際は、新たに仮枠等を設けてコンクリートを打増しする。そのコンクリートの仕様はもちろん母材と同じもので、その補修方法は補修施工計画書を策定させて確認する。



6章 コンクリート工事 10節 軽量コンクリート

第6章 コンクリート工事


10節 軽量コンクリート

6.10.1 一般事項

(a)細骨材及び粗骨材の全部に人工軽量骨材を用いるコンクリート及び粗骨材のみに人工軽量骨材を用いるコンクリートを対象としている。細骨材の全部又は一部に人工軽量骨材、粗骨材に普通骨材を用いる組合せも考えられるが、このような使用方法はほとんど実施されておらず、対象外である。

【解説】
軽量コンクリートの適用範囲.jpg



軽量コンクリートを、常時、土又は水に接する部分(地下の外壁、擁壁等)に使用できることになっている。ただし、この場合には「標壮」 6.10.2(h)に示されているように単位セメント量を 340kg/m 3 以上としなけれぱならない。

(b)普通コンクリートと同様の扱いでよい内容については、「標仕」10節では規定していない。したがって、「標仕」10節に規定していない事項については「標仕」1節から9節の規定を適用する。同一事項について 1節から9節と10節とで重複した規定がある場合には、10節の規定を優先する。

(c)「標仕」表6.10.1に示されているように、粗骨材のみに人工軽量骨材を用いるコンクリートを 1種、粗骨材に主として人工軽量骨材を用い、細骨材に人工軽量骨材若しくは人工軽量骨材に普通細骨材を混合した骨材を用いるコンクリートを2種としている。かつて、2種の粗骨材は人工軽量粗骨材のみとされていたが、普通骨材を混合することで、強度やヤング係数等の力学的性能に対する要求に対応する技術も出てきたことから、人工軽量粗骨材に「主として」という記述が加えられている。軽量コンクリートの要求品質である気乾単位容積質量の標準的な値の範囲は、「標仕」表6.10.1 に示されている。特記により、軽量骨材を用いて高強度コンクリートを製造する場合を考慮して1種の場合の気乾単位容積質量の標準的な値の範囲の最火値は 2.1 t/m 3 としている。

なお、具体的な気乾単位容積質量の概略値をあらかじめ推定したい場合には、使用する粗骨材と細骨材の絶乾密度の組合せから表6.10.1により求めることが可能である。


表6,10.1 骨材の絶対密度とコンクリートの気乾単位容積質量の推定値との関係 JASS5より
表6.10.1骨材の絶乾密度とコンクリートの気乾単位容積質量の推定値との関係.jpg


(d) 軽量コンクリートの主要な品質である気乾単位容積質量については、対象建物ごとに設計で用いる値を特記することになっている。


6.10.2 材料及び調合

(a)人工軽量骨材の種類、区分や品質は JIS A 5002(構造用軽量コンクリート骨材)に規定されている。「標仕」 6.3.1(b)(1)ではJIS A 5002に規定する人工軽量骨材のうち、JIS A 5308(レディーミクストコンクリート)の附属書A (規定)[レディミクストコンクリート用骨材]によるものとしている。この附属書A (規定)では,粗骨材の浮粒率の限度を、10.0%としている。本節で用いる人工軽量骨材の品質は、この附属書A(規定)の規定に加えて、骨材の実績率による区分はA (モルタル中の細骨材の実績率 50.0%以上、粒骨材の実績率 60.0%以上)に限定し、コンクリートとしての圧縮強度による区分は3以上(圧縮強度 30 N/mm 2 以上)に限定している。これらは JASS5 M-201(人工軽量骨材の性能判定基準)に準拠している。

(b)人工軽量粗骨材の最大寸法は、15mm とする。

なお、現在市販されている人工軽量骨材の大部分のものは最大寸法が15mmであり、JIS A 5002 においても 2003年版より最大寸法 20mm のものは削除されている。

(c)人工軽量骨材は.骨材中に多くの空隙を含むことにより密度が軽くなっている。このため普通骨材に比べて吸水率か大きくなるが、すべての空隙を水で満たすことは困難である。実際の使用に当たっては、コンクリートの運搬中におけるスランプの低下や圧送中における圧力吸水が生じないように、あらかじめ十分吸水させたものを使用することが必要である。人工軽量骨材製造所では、表6.10.2 に示すすように出荷時の含水率の管理を行っているので、レディーミクストコンクリート工場では人荷したのち乾燥しないようしに管理することが重要である。




表6.10,2 市販人工軽量骨材の代表的品質(JASS5 より)
表6.10.2市販人工軽量骨材の代表的品質.jpg


(d) 軽量コンクリートの気乾単位容積質量の値は、(乾燥状態の粗骨材の質量 + 乾燥状態の細骨材の質量 + 自由水を含まないセメントペースト硬化体の質量 + コンクリート中の自由水量)として求めることができる。セメントペースト硬化体の質量はセメントの乾燥質量に 25%の結合水を加えた値とし、コンクリート中の自由水量を実験結果に基づいて 120kg/m 3 とした式が「標仕」6.10.1式である。この式によって求めた値が特記され値より小さいことか必要である。ただし、特記された値に比べて小さ過ぎると構造上の問題を生じる場合が考えられるので -100kg/m 3 以内とすることが必要である。

(e) 軽量コンクリートは、普通コンクリートに比べて多量の水を含んでいるため凍結融解作用に対する抵抗性が小さい傾向が認められる。そこで、調合設計時の目標空気量を普通コンクリートより 0.5%大きくし 5.0%としている。

(f) 軽量コンクリートのスランプの値は、特記がなければ、21cm以下で定めることにしている。

(g) 軽量骨材中には多くの空隙があるため、同じ水セメント比では圧縮強度や凍結融解抵抗性が小さく、中性化が早くなる傾向が認められる。そこで、水セメント比の最大値を55%としている。

(h) 軽量粗骨材の最大寸法が 15mmと小さいこと及び水セメント比の最大値を小さくしているため単位セメント量の最小値を 320kg/m 3 としている。ただし、常時土又は水に接する部分に用いるコンクリートでは、透水に対する抵抗性を確保するため単位セメント量の最小値を 340kg/m 3 とし、水セメント比を小さくするよう配慮している。

(i)軽量コンクリートの試し練りでは、計画スランプ、計画空気量及び調合強度に加えて所要の気乾単位容積質量が得られることを確認することとしている。


6.10,3 製造,運搬,打込み及び締固め

(a) ホンプ圧送を行う軽量コンクリートの練混ぜ時の人工軽量粗骨材の吸水率の値を 20%以上とすることを定めている。これは、6.10.2(c)に示されるスランプの低下や、圧送による圧力吸水を防止するための対策である。表6.10.2に示すように製造所出荷時の吸水率はこれらの値を満足するように管理されているので、入荷後の乾燥を防止する対策が十分とられていることを確認することが大切である。


(b) 軽量コンクリートを圧送する場合には、骨材の圧力吸水によるスランプの低下や輪送管内での閉塞を生じるおそれがあり、この傾向は特に圧送距離が長い場合に顕箸である。この対策としては、輸送管の径を大きくするほかに中継ポンプの使用や他の運搬方法との併用等が考えられるが、「標仕」では輸送管の径を大きくする方法を採用し、輸送管の水平換算距雜が150m以上になる場合には輸送管の呼び寸法を 125A 以上とし、圧送を容易にしている。


(c) 軽量コンクリートの運搬時においては、骨材への時間の経過に伴う吸水が考えられることや密度の小さい人工軽量粗骨材が上部に集まりやすいので注意が必要である。したがって、事前吸水を十分行うことと材料分雜をできるだけ生じない方法で運搬し、荷卸しに当たっては、トラックアジテータを高速で回転し、均一にしてから排出することが重要である。


(d) 軽量コンクリートの打込み及び締固めでは、人工軽量粗骨材の密度が小さいためモルタルが沈降し、粗骨材が浮き上がって分離する傾向にあり。また、自重が軽いため型枠の隅々や鉄筋の回りにいきわたりにくくなる。バイブレーターによる横流しを厳禁したり、高所からのコンクリートの投入を避けるなど分離を生じない方策を徹底するとともに、ハイブレーターの選定に当たっては、周波数の高いものを用いるようにする。振動機の1度の差込み時間は 5秒程度とし、かけ過ぎないようにする。


(e) 軽量コンクリートは、普通コンクリートに比べてブリーディングによる沈降が大きく打込み順序を適切に定めないと沈降に伴うひび割れを発生する。したがって、壁及び柱に打ち込んだコンクリートが落ち着いたのちに梁を打ち込み、梁のコンクリートが落ち着いたのちにスラブを打ち込む基本(「標仕」6.6,4(g))を忠実に守る必要がある。


(f) 人工軽量骨材は、密度が小さいため上向へ浮き上がってくる。これを防止するための対策として、骨材の品質規定で粒骨材の浮粒率を10%以下としている。しかし、施工時に粗骨材が上面に浮き上がる場合には、図6.10.1に示す道具(ジッターバッグ)等を用いてコンクリートが硬化する前に粗骨材をコンクリート内部に押さえ込んでから表面仕上げを行うことが必要である。この粗骨材の浮上がりは、夏期より冬期、富調合より貧調合のコンクリートほど著しくなる傾向にある。


図6.10.1ジッターバッグ.jpg
図6.10.1ジッターバッグ

6.10.4 試験

気乾単位容積質量の試験は、コンクリートの質量変化がほとんどなくなる気乾状態にすることが必要なため長期間(例えば91日間)を要し、品質管理には不向きである。計画調合どおりの調合で製造されていれば必要な気乾単位容積質量が得られるので、計画調合に基づくフレッシュコンクリートの単位容積質量の基準値と実際の測定値との差を管理することにより必要な気乾単位容積質量か得られたかどうかの確認を行うことが可能である。このような考え方に基づいて、品質管理を行う方法が示されており、実測値と基準値の差が±3.5%の範囲にあれば合格と判定することにしている。

なお、計画調合に基づくフレッシュコンクリートの基準値は製造時の骨材の吸水状況によって変化するので練混ぜに使用した骨材の吸水率を用いて求めることが大切である。



6章 コンクリート工事 11節 寒中コンクリート

第6章 コンクリート工事


11 節 寒中コンクリート

6.11.1 一般事項

寒中コンクリートの適用は「標仕」では特記によることになっており、その適用期間の原則はコンクリート打込み後の養生期間にコンクリートが凍結するおそれのある期間である。寒中コンクリートでは、初期凍害の防止と低温による強度発現の遅れに対する対応の2点が技術的課題である。

JASS 5 12節[寒中コンクリート工事]では、初期凍害防止の対策を講じなければならない期間を、打込み日を含む旬の日平均気温が 4℃以下の期間とし、低温による強度発現の遅れに対する調合上の対策及び養生条件の検討が必要な期間を、材齢 91日までの積算温度が 840°D・D を下回る期間としており、解説の中で、表6.11.1のような地域と期間を定めている。

気象庁による 1981〜2010年の平滑平年値を各旬ごとに表6.11.2 に示す。

気象記録のある気象台、測候所、観測所等の高さと異なる場合は、100m 高くなるごとに平均気温は 0.5〜0.6℃低くなるものとして扱う。



表6.11.1 寒中コンクリート工事の適用期間(その1)
(JASS 5 (2009)の表を気象庁平年値 (1981〜2010年)により修正)
表6.11.1寒中コンクリート工事の適用期間(その1).jpg


表6.11.1 寒中コンクリート工事の適用期間(その2)
表6.11.1寒中コンクリート工事の適用期間(その2).jpg

表6.11.2 旬平均気温 (0.1℃)(その1)(気象庁平年値データより)
(統計期間:1981〜2010年)
表6.11.2旬平均気温(その1).jpg


表6.11.2 旬平均気温(0.1℃)(その2)(気象庁平年値データより)
表6.11.2旬平均気温(その2).jpg


6.11.2 材料及び調合

(a) 寒中コンクリートにおいても、構造体コンクリートの強度は、普通コンクリートと同様、材齢 91日までに所定の設計基準強度(Fc)が得られるものでなければならない。普通コンクリートと異なるのは,圧縮強度 5 N/mm 2 が得られるまでは、コンクリートが凍結しないように適切な養生を行うことが必要ということである。調合は、養生計画に応じて、養生期間内に圧縮強度 5 N/mm 2 が得られるように定めなければならない。

(b)「標仕」では、かつて積算温度により管理することを原則としていた。しかしながら、積算温度方式は、一般的な現場での適用が難しいため、普通コンクリートと同じく、設計基準強度(Fc)に、「標仕」表 6.3.2 の構造体強度補正値(S)を加えた値以上となるように調合管理強度を定めて管理をすることとしている。

「標仕」6.11.2(c)の「ただし書き」における積算温度とは「材齢(日)」と「温度 + 10(度)」の積で求められる値であり、 28日間 20℃で養生した場合に 28(日) × ( 20 + 10 )(度)= 840°D・D となる。適切に初期養生が行われた場合には、日数と温度の組合せが変わっても、積算温度が同じであれば同程度の強度が得られるといわれている。経済的な養生方法で、材齢 91日までの積算温度が 840°D・D 以上となる場合には、普通コンクリートと同じく、設計基準強度(Fc)に、「標仕」表6.3.2 の構造体強度補正値(S)を加えた値以上となるように、調合管理強度を定めて管理をすれば、20℃で 28日間の場合と同様、設計基準強度の確保が期待できる。

しかし、北海道等では、保温養生によって材齢 91日までの積算温度を 840°D・D以上とするのが 不経済となる場合も多い。JASS 5 12節及び(-社)日本建築学会「寒中コンクリート施工指針・同解説」では、コンクリートの積算温度と強度の関係から、設計基準強度が得られる積算温度を、調合管理強度に応じて求める方法が示されており、材齢 91日までの積算温度が840°D・D を下回る場合の調合管理強度の決定、養生計画の立案の際の参考にするとよい。

(c) 混和剤として、AE減水剤遅延形や高性能AE減水剤を用いる場合には、コンクリートの凝結や硬化が遅れて初期棟害を生じる危険性が増すため、初期養生に注意する(6.11.4 参照)。



6.11.3 製造、運搬及び打込み

(a) 寒冷期にはコンクリートの輸送時間が長いと、コンクリートが冷されて、打込み時に「標仕」に定められた所定のコンクリート温度が得られないことがあるため、コンクリート製造工場の選定に当たっては、運搬時間を考慮する必要がある。

(b)「標仕」にコンクリートの荷卸し時の温度は10℃以上、20℃未満と定められているが、理由は次のとおりである。

(1) ワーカビリティーに対する影響がでる。

(2) 打込み中、湯気により作業に支障がでる。

(3) コンクリートの硬化が始まる前に、部分的に凍結するおそれがある。

コンクリートの練上がり時の温度は、6.11.1式で求められる。

6.11.1式.jpg

(c)セメント投入直前の材料の温度が 40℃を超える場合には、セメントが異常凝結を起こすおそれがあり、「標仕」では禁止されている。

(d)運搬中及び施工中のコンクリートの温度低下は、1時間当たり外気温とコンクリート温度との差の15%程度といわれている。


6.11.4 養 生

(a) 寒中コンクリートでは、初期養生が最も重要であるが、これは初期凍害の防止のためである。コンクリートが凝結中に凍結すると、その後の強度の上昇・回復は期待できない。

養生方法については、信頼できる資料を基に、工期、経済性等を十分に検討して決定しなければならない。


(b)「標仕」6.11.4(b)で、初期養生の期間を圧縮強度が 5 N/mm 2 に達するまでと定めているのは、凍害は硬化体の組織が粗いほど、また、引張強度が小さいほど激しいので、硬化体形成の目安を、上記の圧縮強度としているからである。

「寒中コンクリート施工指針・同解説」では、「コンクリート温度またはその周囲の温度の中でもっとも低い部分において求めた積算温度による強度の推定値および JASS 5 T- 603(構造体コンクリートの強度推定のための圧縮強度試験方法)による強度が、5.0 N/mm 2 以上となった段階で初期養生を打ち切ってよい。」と定めている。


6.11.5 型 枠

型枠の取外しは、圧縮強度によることとし、「標仕」6.8.5では、せき板は圧縮強度が 5N/mm 2 以上、支柱はスラブ下で圧縮強度が設計基準強度の 85%以上又は12N/mm 2 以上であり、かつ、施工中の荷重及び外力について、構造計算により安全であることが確認されるまでとしている。また、梁下では圧縮強度が設計基準強度以上であり、かつ、施工中の荷重及び外力について、構造計算により安全であることが確認されるまでとしている。


6.11.6 試 験

(a) 初期養生期間の決定、任意材齢の強度の推定、強度上の水セメント比の決定等は、「寒中コンクリート施工指針・同解説」の試料3及び4に示された図表等を参考にして行うとよい。

(b)「標仕」6.11.6(c)は、従来「標仕」6.9.5[構造体コンクリート強度の推定試験]の中で規定されていたものであるが、材齢28日の現場封かん養生供試体の試験が寒中コンクリートを除いて削除されたため、ここに改めて規定されたものである。


6章 コンクリート工事 12節 暑中コンクリート

第6章 コンクリート工事


12 節 暑中コンクリート

6.12.1 適用範囲

(a) 暑中コンクリートは、日平均気温の平年値が 25 ℃を超える期間が適用期間となっている。日平均気温の平年値とは、過去30年間の日平均気温をKZフィルター(単純移動平均を数回繰り返す方法)を用いて、9日間の移動平均を 3回行った値である。例えば、東京では 7月13日から 9月 8日までが適用範囲となる。

(b) 暑中コンクリートは、次のような問題を生じやすい。

?@単位水量の増加・・・・・・強度低下

?Aスランプ低下率の増大・・・ポンプ圧送困難、ワーカビリティー低下

?B凝結、硬化の促進・・・・・打継ぎ不良、仕上げ不良

?C急激な表面乾燥・・・・・・表面ひび割れの発生

?D高温なコンクリート・・・・ひび割れの発生

コンクリートの温度が高い時は反応速度が早く凝結、硬化の進み方が早くなる。例えば、コンクリートの温度が 30℃になると 20℃の場合に比べ、輸送時間 60分のときでスランプが 1〜 2cm低下する。また、同じスランプを得るのに単位水量が 4〜7kg/m 3 増加する。

詳細については (一社)日本建築学会「暑中コンクリートの施工指針・同解説」を参考にするとよい。


6.12.2 材料及び調合

(a) セメントの温度が 8℃高いと、コンクリート温度は約1℃高くなる。セメントの温度が高い場合は、入荷後セメントサイロ内に一定期間放置して温度を下げるなどの対策が望まれるが、そのような対策をとるのは困難な場合が多く、骨材又は水を冷やす方が現実的である。

(b) 骨材は、コンクリート1m 3 中に占める使用料が最も多いので、骨材温度はコンクリートの練上がり温度に大きく影響し、骨材温度が2℃高いとコンクリート温度は約1℃高くなる。 骨材の温度上昇を防ぐには、直射日光を当てないように屋根を設けたり、骨材に散水するなどの措置を講じるのがよい。ただし、細骨材に散水しても冷却効果は少なく、また、表面水の管理が難しくなるため、注意が必要である。

(c) 水は比熱が大きく、コンクリートの線上がり温度に及ぼす影響は、使用量の割には大きく、水の温度が 4℃高いとコンクリート温度は約1℃高くなる。したがって、なるべく低温のものを使用するのがよい。

(d) 6.12.1で記述したように凝結が早くなるので、凝結時間を遅延するためにAE減水剤の遅延形I種又は高性能AE減水剤遅延形I種を使用するのがよい (6.3.1(d)(3)参照)。この混入は、コンクリートのワーカビリティーを保つのに非常に効果がある。

(e) 高温下で養生されたコンクリートは、20℃で養生されたコンクリートよりも強度発現が停滞する傾向にあることから 「標仕」では構造体強度補正値(S)を特記により定めるとしている。特記のない場合は、上述の理由から、構造体強度補正値を 6 N/mm 2 とすることとしている。


6.12.3 製造及び打込み

(a) 6.12.1(b)の弊害を抑制するため、「標仕」では、荷卸し時のコンクリート温度を、原則として 35℃以下とすることとしている。しかし、最近では各地域の最高温度が高くなる傾向にあり、盛夏期では、使用材料の温度制御等の対策では 35℃を超えることが避けられない場合も予想される。そのような場合を想定し、材料・調合、打重ね時間、養生方法・期間等についてあらかじめ検討し、対策を講じておくのがよい。

(b) せき板及び打継ぎ面が乾燥していると、あとから打ち込まれるコンクリートから水分がせき板及び打継ぎ面に吸収されるため好ましくない。ただし、散水後にせき板及び打継ぎ面に水がたまっているとコンクリートの品質が低下し、特に打継ぎ面に水がたまっていると打継ぎ部の一体性が損なわれるため、たまった水は高圧空気等によって取り除く。

(c) 輸送管が直射日光の当たるところに設置されると、配管の段取り替えや運搬車の待ち時間等で輸送管内のコンクリートの温度が上昇し、コンクリートのワーカビリティーが低下して閉塞やコールドジョイント等のトラブルが発生しやすい。したがって、輸送管等の運搬機器は、できるだけ直射日光を受けない場所に設置することが望ましい。 直射日光を受けるような場合は、輸送管をぬれたシート等で覆い、コンクリート温度の上昇を防ぐようにする。

(d) 「標仕」では、コンクリートの練混ぜを開始してから90分以内に打込みを終了するように定められているがそのためにはコンクリート運搬車の現場到着後の待ち時間をできるだけ短くすることが必要である。

(e) 打ち込まれるコンクリートが接する箇所の温度が高いと、これらに接したコンクリートの表層部は、急激に水分が吸収されるなどして、一体性や付着強度に悪影響を及ぼすことになる。したがって、打ち込まれるコンクリートが接する箇所は、表面温度が上昇しないように散水あるいは直射日光を防ぐなどの対策を講じる必要がある。ただし、散水によって冷却する場合は、型枠内に水がたまらないようにする必要がある。

(f) 暑中環境における打込みでは.コンクリートの凝結が急速に進み、コールドジョイントが発生しやすくなる。このため、打込み継続中における打重ね時間間隔の限度内にコンクリートが打ち込めるように、1回の打込み量、打込み区画及び打込み順序を考慮した打込み計画を立て、これに基づいて施工を行う。


6.12.4    養 生

(a) 表面からの水分の蒸発を防ぐことが大切であり、打ち上がったコンクリートの浮き水の状況や風速等を考慮し、急激な乾燥のおそれがある場合は散水を行う。打込み後は.6.7.2 に準じて湿潤養生を行う。

(b) コンクリート上面ではブリーディング水が消失した時期以降にコンクリートが乾燥の影響を受けるので、湿潤養生はこの時期から開始するのがよい。せき板に接している面は、封かん養生に相当する程度の養生条件が保たれているものと考えられるので。養生は脱型直後から開始すればよい。

(c) 湿潤養生終了後に、直射日光や風等によって急激にコンクリートを乾燥させるとひび割れが発生しやすくなる。湿潤養生後は、養生シート等をできる限り長く存置させて、急激な乾燥を防止するのがよい。



2023年12月26日

6章 コンクリート工事 13節 マスコンクリート

第6章 コンクリート工事


13 節 マスコンクリート

6.13.1 一般事項

一般に、断面寸法の大きい部材に打ち込まれたコンクリートは、硬化中にセメントの水和熱が蓄積され内部温度が上昇する。このため、コンクリート部材の表面と内部に温度差が生じたり、また、全体の温度が降下するときの収縮変形が拘束されたりして、ひび割れが生じるなどの問題が起きやすい。また、1回に打ち込むコンクリートの量が大量になる場合が多いので、入念な打込み計画のもとに施工しないとコールドジョイントが生じやすくなる。コールドジョイントが発生しないようにするためには、連続的に打ち込むことが重要である。また、先に打ち込まれ硬化したコンクリートからの拘束をできるだけ小さくするように打込み区画の大きさ、打込み順序・打込み時間間隔を定めることが重要である。

そこで「標仕」では、「部材断面の最小寸法が大きく、かつ、セメントの水和熱による温度上昇で有害なひび割れが入るおそれがある部分のコンクリート」は、マスコンクリートとしてこの節を適用することとしている。

この場合の目安としては、最小断面寸法が壁状部材で800mm以上、マット状部材・柱状部材で 1,000mm以上である。柱状部材では外部拘束が小さいので温度ひび割れが入りにくいが、構造体の強度発現に留意する必要がある。このほかに、設計要求性能のレベル、コンクリート強度、部材形状、拘束の程度、1回に打ち込まれるコンクリー卜量、実績等を考慮して、その適用を定める必要がある。


6.13.2 材料及び調合

(a) 部材の内部温度の上昇は、 他の条件が同じであればセメントの水和熱に比例して増加する。セメントの水和熱の大きさは、セメントの化合物の中でも、C3S(けい酸三カルシウム)、C3A(アルミン酸三カルシウム)の多少によって影響される。したがって、内部温度を低減するためには、できるだけ発熱量の小さいセメントを選定する必要がある。

マスコンクリートには、水和熱の小さい中庸熱ポルトランドセメント、低熱ポルトランドセメント又はフライアッシュセメントB種を用いるのがよい。これらのセメントは地域によっては入手が難しいことがあるので、事前に供給について確認しておくことが必要である。

高炉セメントB種はこれまで「標仕」のマスコンクリートの標準的なセメントであった。 最近の高炉セメントは、高炉スラグの粉末度を高くして強度発現性を改良する領向にあり、発熱速度が速くなるものもあるため、使用に当たっては注意が必要である。

早強ポルトランドセメントは、水和熱が大きいので用いない方がよい。


(b)化学混和剤の中のAE減水剤及び高性能AE減水剤の使用は、単位水量を減少させ、その結果、単位セメント量も少なくなり、温度上昇は小さくなる。特に、AE減水剤遅延形及び高性能AE減水剤遅延形は、セメントの水和反応を抑制し、温度上昇を緩やかにするのでマスコンクリートに適している。

AE減水剤標準形及び高性能AE減水剤標準形を用いる場合は、コンクリートの品質を確保しながら、減水効果が高<、単位セメント量をなるべく少なくできるものを用いるのがよい。

AE減水剤促進形は、セメントの水和反応が促進され、初期の水和熱量を増大させるので、使用してはならない。

混和材を用いる場合は、コンクリート用フライアッシュ?T 種若しくは ?U 種又はコンクリート用高炉スラグ微粉末の3000若しくは4000を用いる。 ただし、フライアッシュ I 種は粉末度が?U 種より大きく、発熱抑制効果が?U種より小さいことが指摘されているので、信頼できる資料若しくは事前の試験等により性状を確認してから使用するのがよい。

(c) コンクリートの練上がり温度が高いと、最高温度も高くなり温度ひび割れが入りやすくなるので、使用する材料はなるべく温度の低いものを用いるようにする。骨材は使用量が多く、練上がり温度に及ぼす影響が大きいので、直射日光が当たらないようにしたり、散水をするなどしてなるべく温度が高くならないようにする。ただし、細骨材に散水すると表面水の管理が難しくなるので、避けたほうがよい。

(d) コンクリートの内部温度上昇を小さくするための重要な事項の一つは、単位セメント量を少なくすることである。粗骨材の寸法を大きくしたり、混和材・化学混和剤を活用するなどの使用材料上の配慮を行うとともに、次のようなコンクリート調合上の配慮が必要になる。

(1)必要以上に調合強度を高くしない。

(2)できるだけ低スランプとする。

(3)必要に応じ流動化剤を有効に使用する。

なお、詳しい内容は、JASS 5 21節[マスコンクリート]を参照するとよい。

(e) 構造体強度補正値(S)は、基本的には一般のコンクリートと同じであるが、中庸熱ポルトランドセメント及び低熱ポルトランドセメントを用いる場合、暑中期間における補正値は 6 N/mm2 ではなく、3 N/mm2でよいことになっている。


6.13.3 製 造

荷卸し時のコンクリート温度が高いほど内部温度上昇は速く進み.最高温度が高くなり.温度降下速度も大きくなる。また、大量のコンクリートを長時間にわたって打ち込む場合、荷卸し時のコンクリート温度が高いと、セメントの水和熱による温度上昇も加わって凝結が速くなり、コールドジョイント等の問題が生じやすい。このため、「標仕」では.荷卸し時のコンクリートの温度を35℃以下と規定している。


6.13.4 養 生

コンクリートの内部温度をできるだけ低くするのが、マスコンクリートの施工の最も大切なことであるが、内部温度を低くする目的で、コンクリート表面を冷水等で冷やしても、マスコンクリートの場合は主に表面部分の冷却のみにとどまり、内部の温度上昇を低くするのにはあまり効果がなく、かえって内部と表面部の温度差を大きくし、ひび割れを誘発する場合が多い。マスコンクリートのひび割れ防止のためには、 内部と表面部の温度差及び部材温度の降下速度をできるだけ小さくすることが重要である。このため型枠の存置期間を長くするなどの養生を行い、せき板等の脱型は表面部の温度と外気温との差が小さくなってから行うことが大切である。


6.13.5  試 験

(a)マスコンクリートの調合計画では、 一般の場合と異なりコンクリート部材の予想平均養生温度に基づいて調合強度を決定している。 また、構造体コンクリートの強度検査では、構造体コンクリートと同じ温度履歴を供試体に与えることが困難であるため、標準養生による供試体の強度試験結果による間接的な検査を行っている。

(b)構造体コンクリート強度の推定試験の判定は、ポテンシャル強度の確認によっているので、材齢 28日の圧縮強度試験結果が、調合管理強度以上であれば合格となる。


6章 コンクリート工事 14節 無筋コンクリート

第6章 コンクリート工事


14 節 無筋コンクリート

6.14. 1 一般事項

(a) 「標仕」では、土間コンクリートのうち、亀裂防止等のため補強筋を入れているものについては、塩分総量規制を受ける普通コンクリートとして取り扱うこととしている。

なお、官庁営繕工事においては、土間コンクリートはすべて補強筋を人れており、無筋コンクリートの適用を受けるものはほとんどない。


(b) 無筋コンクリートの適用箇所は、「標仕」6.14.1(e)からも分かるようにあまり強度を必要としないところが多いことから、一般的には、設計基準強度を18N/ mm 2 とすればよい 。

(c) 防水層の保護コンクリートとして、「標仕」6.14.2 (a)により骨材の最大寸法 25mmの砂利を使用すると、コンクリートの厚さ60mmでこて仕上げをするのにはやや無理がある。こて仕上げを指定する場合は80mm以上とすることが 望ましい。

防水層の保護のコンクリートに気泡コンクリート (空気量が 50%以上も入る場合)を使用し、その上にモルタル 仕上げ等をすると接着力が弱く、はく離を起こすことが多い。こて仕上げに問題が多いので 「標仕」では気泡コンクリートを除いてある。


6. 14. 2 材料及び調合

(a ) コンクリート塊のリサイクルを促進するためには、適用箇所に応じて再生骨材を使用していくことが重要である 。

「 標仕 」 では無筋コンクリートにはJIS A 5308(レディーミクストコンクリート) 附属書A(規定)[レディーミクストコンクリート用骨材]の規定を満足するコンクリート用再生骨材 H を使用してよいことにしている 。

なお、再生骨材の産地を限定することは極めて困難なので、これを用いるコンクリートに使用するセメントは、アルカリシリカ反応抑制対策を考慮して高炉セメントB種又はフライアッシュセメントB種とするのが望ましい。

(b) 無筋コンクリートであるため、鉄筋を有する一般のコンクリートに求められる耐久性確保のための単位セメント量や水セメント比の規定は設けていない。


6.14.3 レディーミクストコンクリートの発注、品質管理等

(a) 「標仕」6.14.2 (b)に示すように、コンクリ ート構造体強度補正値の割増しは行わないことにしているので、使用するコンクリートの呼び強度は設計基準強度以上とする。一般的には呼び強度18 のコンクリートを使用すればよい。

(b) 無筋コンクリートの適用箇所を考えると、一般のコンクリートと同様に試し練りや構造体コンクリート強度の推定試験を行うのは実際的ではないことから、JIS A 5308(レディーミクストコンクリート)への適合を認証された普通コンクリートの場合には、試し練り及び構造体コンクリート強度の推定試験を省略できることとしている。


6章 コンクリート工事 15節 流動化コンクリート

第6章 コンクリート工事


15 節 流動化コンクリート

6.15.1 一般事項

(a) 流動化コンクリートを使用する場合には、その使用目的を明確にし、構造物のコンクリートが所定の品質のものとなるように、材料、調合、流動化の方法、品質管理の方法等必要な事項を施工計画書において確認する。

なお、(一社)日本建築学会では、「流動化コンクリート施工指針・同解説」において、流動化コンクリートの使用方法等について示しているので、これを表 6.15.1 に示す 。

表 6.15.1 流動化コンクリートの使用方法と調合の計画、使用目的
(流動化コンクリート施工指針・同解説より)
表6.15.1流動化コンクリートの使用方法と調合・使用目的.jpg


(b) 流動化コンクリートの施工に当たっては、工事現場にコンクリートについて十分な知識と経験をもつ施工管理担当者をおいて、入念な管理を行う必要がある。


6.15.2 材料及び調合

(a) 流動化剤は、JIS A 6204(コンクリート用化学混和剤)で標準形と遅延形に分類し、それぞれの品質規格を定めているが、銘柄によって品質に若干差があるので、JIS A 6204に適合するもののうちから品質の均一性及び使用実績等も考慮して選定する必要がある。

標準形は、一般のコンクリート工事に用いられるものであり、遅延形は、主として暑中コンクリート等でコンクリートの凝結を遅らせる目的に用いられる。

遅延形は流動化効果と凝結遅延効果を併せもつものであり、添加量によって流動化の程度と凝結遅延性が同時に変化するので、所定の凝結遅延性を得るためには、ベースコンクリートには遅延形のAE減水剤を用い、流動化剤は標準形とするのが望ましい。

流動化剤の主成分である高性能減水剤の中には、AE 効果が極めて小さいものがあり、ベースコンクリートに用いられるAE剤・AE減水剤との組合せについても十分に検討する必要がある。

(b) 流動化剤は、銘柄によって、流動化効果や空気量の安定性等に若干の差があるので、流動化コンクリートの調合は、工事に使用する材料を用い、実際の施工条件になるべく近い条件で試し練りを行って定める必要がある。

また、流動化コンクリートは、同じスランプの通常の軟練りコンクリートに比較してスランプの経時変化が大きいので、これについても試し練りの段階で検討を加えておくことが肝要である。


(c) 流動化剤は原液で用いられるので、通常の使月量で変化するコンクリートの水セメント比はおおよそ0.3%程度であり、圧縮強度に及ぼす影響はほとんどないこと、及び流動化剤添加前後の圧縮強度に関するする多くの実験報告によっても、流動化コンクリートの圧縮強度とベースコンクリートのそれとの間には、空気量が同じならば 有意な差はほとんど認められていないことにより、流動化コンクリートの調合は、ベースコンクリートの圧縮強度に基づいて定めてよいこととしている。

(d) ベースコンクリー ト及び流動化コンクリートのスランプは、コンクリートの種類・使用材料・運搬・打込み等の施工の条件に応じて無理のない組合せとし、「標仕」表6.15.1 を満足するように定める。


(e) 流動化コンクリートの空気量は、一般のコンクリートと同様に、通常の場合、普通コンクリートにあっては 4.5%とする。


( f ) 流動化コンクリートの品質は、ベースコンクリートの調合と流動化剤の添加量により左右される。 所要の品質の流動化コンクリートを得るためには、ベースコンクリートの品質が 一般のコンクリートと同様、「標仕」2 節の品質を満足していることが必要不可欠である。


6.15.3 コンクリートの流動化

(a) 流動化 コンクリートは、同じスランプの通常の軟練りコンクリートに比較してスランプの経時変化が大きいので、流動化剤の添加及び流動化のためのかくはんは、工事現場で行うこととしている。 また、かくはんの管理は、 回転数又はかくはん時間によって行うとよい。

なお、市街地でのトラックアジテータの高速かくはんは、騒音の問題が発生するので、工事開始前に住民の理解を得る必要がある(6.4.3 (b)参照)。

(b) 流動化剤を水で希釈して使用すると、コンクリートにあと添加される水の量が増えることになり、強度その他の性能に及ぼす影響が無視できなくなるので、流動化剤は原液で使用することとしている。

(c) 流動化コンクリートの施工に当たっては、流動化における工程管理は、できるだけシンプルであることが望ましいので、ベースコンクリートが所定の範囲で管理されている場合は、流動化剤の添加量は、あらかじめ定めた一定量とし、これを一度に添加することとしている。

なお、コンクリート温度の変化、その他の原因により、流動化効果が変化した場合、また、スランプの変動が大きい場合、工事現場における運搬車の待機が長くなった場合等においては、添加量を変更するなど適宜対処する。

(d) 現在、市販されているほとんどの流動化剤は液体であるので、質量又は容積のいずれかで計量することとし、計量誤差は,JIS A 5308(レディー ミクストコンクリート)の 8.2.2 [ 軽量誤差 ]の混和剤の規定と同じく1回計量分量の ± 3 %以内としている 。


6.15.4 品質管理

(a) 流動化コンクリートを製造するうえで、ベースコンクリートの品質変動ができるだけ小さくなるように品質管理することが特に重要であるので、一般のコンクリートと同様、ベースコンクリートの品質管理も「標仕」 5 節による。


(b) 流動化後のコンクリートの品質管理試験は、流動化の工程が計画どおりに実施され、所定の品質に適合したコンクリートを製造しているかどうかについて試験し、確認するものであり、あらかじめ定めた頻度で「標仕」5 節に準じて試験を行い、流動化工程の品質を管理し、また、運搬から打込みまでの品質の変化が確認できるようにする。そのため、流動化剤の投入場所には、コンクリートに精通した専任の施工管理担当者を配置し、入念な管理を行う必要がある。

なお、流動化コンクリートの調合強度は、ベースコンクリートの圧縮強度とほぼ同じとみなすことができるので (6.15.2 (c)参照)、ベースコンクリート及び流動化コンクリートの品質管理状態が良好と判断されれば、流動化コンクリートの調合管理強度の管理試験は省略してもよい。


6.15.5 運搬並びに打込み及び締固め

流動化コンクリートの運搬並びに打込み及び締固めの方法は、基本的には、一般のコンクリートのそれらと変わることがないので、「標仕」6 節によるとしている。

一方、流動化コンクリートは、同一スランプの軟練りコンクリートと比較して、スランプの経時変化が大きい、分離しやすいなど施工に関わる問題点もあるので、運搬並びに打込み及び締固めには、更に、次の事項も考慮する必要が ある。

(1) 流動化コンクリートは、通常の軟練りコンクリー トに比べてスランプの経時変化が大きく、また、使用材料や調合によっては、分離や品質変化が生じやすくなることがあるので、流動化後から打込みまでの時間が短くなるように事前に十分検討して、適切な運搬方法を定める必要がある。


(2) 流動化コンクリートは、練混ぜから流動化までの時間が長いほど、流動化後のスランプの経時変化が大きくなる。したがって、練混ぜから流動化剤添加までの時間をできるだけ短時間とし、また、荷卸しから打込み終了までに要する時間も外気温が 25℃ 以下の場合は 30分以内、25℃ を超える場合は 20分以内とすることが望ましい。


(3) 流動化コンクリートは、通常の軟練りコンクリートに比べてスランプの経時変化が大きいため、先に打ち込んだコンクリートの流動性を考慮して打重ね時間間隔の限度を定めるのがよく、外気温が25℃以下の場合は 60 分、25℃を超える場合は 40分程度にすることが望ましい。


6章 コンクリート工事 [ 参考文献 ]

第6章 コンクリート工事


[ 参 考 文 献 ]



建築工事標準仕様書・同解説
 JASS 5 鉄筋コンクリート工事(2015) 日本建築学会



鉄筋コンクリート造建築物の
 品質管理および維持管理のための試験方法(2007)


暑中コンクリートの施工指針・同解説 (2000)


型枠の設計・施工指針(2011)



鋼構造設計規準 (2005)



軽鋼構造設計施工指針・同解説(SI単位版)(2002)



木質構造設計規準・同解説 (2006)



コンクリートの調合設計指針・同解説 (1999)



寒中コンクリート施工指針・同解説 (2010)



流動化コンクリート施工指針・同解説 (1989)



コンクリートのひびわれ調査、補修・補強指針(2013)
   日本コンクリート工学会

公共建築改修工事・標準仕様書(建築工事編)(平成25年版)
  建築保全センタ−

建築改修工事監理指針(平成25年版)

床型枠用鋼製デッキプレート(フラットデッキ)
 設計施工指針・同解説 (2006)
 公共建築協会フラットデッキ工業会



2019年06月26日

1級建築施工管理技士 躯体工事 暑中コンクリート

第5章 コンクリート工事 暑中コンクリート


暑中コンクリート

暑中コンクリートとは、気温が高く、日射の影響を受ける期間に製造・施工するコンクリートをいう。暑中コンクリートでは、運搬中のスランプロス、打込み時の凝結の促進、コンクリート表面からの水分の急激な蒸発などによって、コールドジョイントやひび割れの発生、長期強度の不足、耐久性の低下などの問題が発生しやすい。


暑中コンクリートの適用期間は、日平均気温の平年値が25℃を超える期間にコンクリートを打込む期間である。JASS5によると、特記に記載がない場合、 日平均気温の平年値が25℃を超える期間 を基準として定め、工事監理者の承認を受けるとなっている。

暑中コンクリートの材料・調合・施工については、JASS5または日本建築学会「 寒中コンクリート施工指針・同解説 」、荷卸し時のコンクリート温度が35℃を超える場合の対策については、日本建築学会近畿支部材料・施工部会「暑中コンクリート工事における対策マニュアル」(以下 “対策マニュアル”という)などを参考にする。

「暑中コンクリート工事における対策マニュアル」の購入は
日本建築学会 より


◆材料・調合

セメント・骨材・練混ぜ水は高温のものを使用しない。しかし、セメント温度の受入れ基準はなく、入荷後セメントの温度を下げるのは困難が場合が多いため、粗・細骨材は適度に湿潤したものを受入れ、粗骨材については適度に散水したものを使用し、練混ぜ水は低温のものを使用するといった対策をとるのが効果的・現実的である。

混和材は、JIS A6204(コンクリート用化学混和剤)に適合したAE減水剤遅延形?T種または高性能AE減水剤遅延形?T種を使用することが望ましい。

構造体高度補正値(S)は特記による。特記に記載がない場合は、6 N/mm 2 とする。


◆製造・運搬・施工

打ち込まれたコンクリートから水分が乾燥したせき板および打継ぎ面へ吸収されないよう、打込み前の散水を入念に行い、たまった水は高圧空気などによって取り除く。打ち込まれたコンクリートが接する箇所の温度が高いと、一体性や、付着強度に悪影響を及ぼすことになるので、表面温度が上昇しないよう散水あるいは直射日光を防ぐなどの対策を講じる必要がある。

コンクリートポンプ車などの運搬機器はできるだけ直射日光を受けない場所に設置し、輸送管などをぬれたシート等で覆うなどして直射日光を避け、コンクリート温度の上昇を防ぐようにする。

コンクリートの練混ぜから打込み終了までの時間は90分以内 とする。トラックアジテーター(生コン)車の待機時間を短くする配車手配を行い、待機場所は直射日光を受けない場所とすることや、アジテータードラムへの散水、ドラムへの遮熱塗装、ドラムカバーの設置などにより、コンクリートの温度上昇をできるだけ抑えるように配慮する。

打重ね時間間隔(120分以下を目安) の限度内にコンクリートが打ち込めるように、1回の打込み量、打込み区画および打込み順序を考慮した計画を立て、これに基づいて施工し、コールドジョイントの発生を防止する。

夜間の打込みについては、工事現場の近隣環境、生コン工場の納入体制、施工者のリスク、コストなど、多くの問題点に対応する必要があるものの、作業員の労働環境(熱中症対策)、コンクリートの高温履歴による不具合などを改善するためには有効な対策と考えられる。

なお、養生についても、「暑中コンクリート」としての特別な配慮が必要である。


◆ 品質管理および留意事項

暑中コンクリートの品質管理は、基本的には通常のコンクリートと同様に行えばよいが、以下の事項に留意する。

?@コンクリート温度を低減するために粗骨材への散水をする場合は、温度管理だけでなく、粗骨材の表面水の管理も通常の場合よりもきめ細かく行って、コンクリートのスランプおよび圧縮強度のばらつきをできるだけ小さくするように生コン工場と打合せをしておく。


?Aコンクリート温度は、運搬時間が長くなるにしたがって次第に上昇するので、運搬に時間を要した場合には、温度測定の頻度を上げるなどしてとくに注意する必要がある。なお、対策マニュアルでは、荷卸し時の温度が 35℃を超えることが想定される場合の対策として、一定の適用条件を満たせば、荷卸し時の温度を38℃以下にすることが可能であることが示されているので、参考にする。


?B荷卸し地点で採取した供試体を屋外に放置すると、強度はその放置期間中に温度と乾燥の影響を受けるため、成形後の供試体の扱いに注意を払う。標準養生を行う供試体は、現場事務所内など、できるだけ20℃に近い日陰の環境下に、現場水中養生もしくは現場封かん養生を行う供試体は、実際の構造体に近い温度履歴となる日陰の環境下に静置する。


?C日本の夏は、温度が高いだけでなく湿度が高いのが特徴である。建設現場ではそのうえに直射日光をも受ける環境下にあるため、作業員の健康管理には常に注意を払い、快適な作業環境を整える。



2018年03月26日

1級建築施工管理技士 躯体工事 コンクリート検定の案内

コンクリート工学会から
コン検の案内が来ましたので連絡します。





検定の目的は以下のようです。
・コンクリート製品がどのように社会に役立っているかを,広く一般の方に知ってもらう。(広報活動の一環)

・建設系学科の学生・生徒にコンクリート製品の役割を知っていただき,コンクリート製品メーカーを就職活動の選択肢の一つにしてもらう。

・コンクリート製品の原材料や製造諸資材のメーカーの方に,コンクリート製品がどのように使われているかを理解いただき,原材料や諸資材の改良,開発に活かしてもらう。

・コンクリート製品メーカーの事務系社員や製造系社員の方に,コンクリート製品がどのように社会に役立っているかを知ってもらい,仕事への誇りと愛着を深めてもらう。

以上、ご興味があれば、ふるってご参加いただければと
思います。

コンクリート検定のご案内



2017年12月01日

1級建築施工管理技士 躯体工事 寒中コンクリートの初期凍害防止対策



寒中コンクリートの初期凍害防止対策



コンクリートの温度は、
打ち込み後の凍結を避けるためには、
10℃程度を確保する必要があり、
一方、打込み温度を上げると
所要の単位水量の増加や凝結が早くなること。
温度ひび割れが発生する可能性が生じること。
などに注意する必要がある。

【 土木学会示方書 】では
 打ち込み時のコンクリート温度は 5〜20℃としている。

【 JASS 5 】では
 初期凍害を防ぐための養生終了時に必要とされる
 コンクリートの強度として、
 5.0 N/mm 2
 とされている。

【 土木学会示方書 】
 初期凍害を防ぐための養生終了時に必要な
 コンクリート強度の標準は下記

 型枠の取り外し直後に構造物が曝される
 環境(養生)を基準として、

(1)コンクリート表面が水で飽和される頻度が高い場合
 断面の大きさ
 (薄い場合)(普通の場合)(厚い場合)
   15     12     10 N/mm 2

(2)コンクリート表面が水で飽和される頻度が低い場合
 断面の大きさ
 (薄い場合)(普通の場合)(厚い場合)
    5      5      5 N/mm 2




※ 初期凍害を防ぐため、所定の強度が得られるまで、
 保温や加熱などの養生を行う必要がある。
【 土木学会示方書 】(施工編)では

 打込み後の凍結を避けるためには、
 打込み温度は 10℃程度確保する必要があり、

【 土木学会示方書 】打込み時の温度 5〜20℃

【 JASS 5 】荷卸し時温度 10〜20℃

・コンクリートの練上がりの温度
【 土木学会示方書 】では練り混ぜ時および
 打込み終了時のコンクリート温度について次式を示し、
 時間あたりの温度低下を
 コンクリート温度と外気温との差の 15 %としている。

 T2 = T1 - 0.15 ( T1 - T0 )× t

 T0:周囲の温度
 T1:練混ぜた時の温度 [ ℃ ]
 T2:打込み終了時の温度 [ ℃ ]
  t :練り混ぜてから打込み終了までの時間 [ h ]

< 積算温度方式 >
積算温度 M は一般に
 M = Σ(θ + A )・Δ t

 M:積算温度 [ ℃・日 または ℃・時 ]
 θ:Δt 時間中のコンクリートの温度 [ ℃ ]
 A:定数 (一般に 10℃)
 Δt :時間(日または時)

(例)
 5℃で 28日養生したコンクリートの圧縮強度と
 10℃で14日養生したコンクリートの圧縮強度は同じ?

 M = ( 5 + 10 ) × 28 = 420 ℃・日
 M = ( 10 + 10 ) × 14 = 280 ℃・日

 積算温度が異なるので、圧縮強度の発現も異なる

□□□□■□□□□■□□□□■□□□□■□□□□■□□□□


Build a Mobile Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: