それでも日々の試行錯誤の中で, 米田埋め込みのありがたさを感じているのでここにまとめておく.
米田の補題を再掲しておく.
$F, G : \mathscr{C} \rightarrow \mathscr{D}$ を関手としたとき, $F$ から $G$ への自然変換の全体を
\begin{equation*}
\newcommand{\Ar}[1]{\mathrm{Ar}(#1)}
\newcommand{\ar}{\mathrm{ar}}
\newcommand{\arop}{\Opp{\mathrm{ar}}}
\newcommand{\Cocone}[2]{\mathrm{Cocone}(#1,#2)}
\newcommand{\Colim}{\mathrm{colim}}
\newcommand{\CommaCat}[2]{(#1 \downarrow #2)}
\newcommand{\Cone}[2]{\mathrm{Cone}(#1,#2)}
\newcommand{\Func}[2]{\mathrm{Func}(#1,#2)}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\Mb}[1]{\mathbf{#1}}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Mt}[1]{\mathtt{#1}}
\newcommand{\Nat}[2]{\mathrm{Nat}(#1,#2)}
\newcommand{\Ob}[1]{\mathrm{Ob}(#1)}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Pos}{\mathbf{Pos}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{\Rest}[2]{{#1}|{#2}}
\newcommand{\Sub}{\mathrm{Sub}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
\Nat{F}{G}
\end{equation*} と書くことにする. この記法のもとで, 米田の補題は次のように述べられる.
米田の補題 (The Yoneda Lemma).$\,$ $F : \mathscr{C} \rightarrow \mathbf{Set}$ を関手とし, 写像
\begin{equation*}
\varphi : \Nat{\Hom_{\Ms{C}}(B, -)}{F} \longrightarrow FB
\end{equation*} を任意の自然変換 $\lambda : \Hom_{\Ms{C}}(B, -) \rightarrow F$ に対して
\begin{equation*}
\varphi(\lambda) = \lambda B(\Id{B})
\end{equation*} として定義する. このとき, $\varphi$ は自然な同型である.
米田の補題の記述において, 関手 $F$ として, $\Ms{C}$ の対象 $A$ による $\Mr{Hom}$ 関手 $\Hom_{\Ms{C}}(A, -)$ をとると, 上の自然同型は
\begin{equation*}
\Nat{\Hom_{\Ms{C}}(B, -)}{\Hom_{\Ms{C}}(A, -)} \stackrel{\sim}{\longrightarrow} \Hom_{\Ms{C}}(A, B)
\end{equation*} となる. これは任意の自然変換
\begin{equation*}
\lambda : \Hom_{\Ms{C}}(B, -) \longrightarrow \Hom_{\Ms{C}}(A, -)
\end{equation*} に対して, ある $(f : A \rightarrow B) \in \Hom_{\Ms{C}}(A, B)$ が一意的に存在して $\lambda$ が
\begin{equation*}
\lambda = \Hom_{\Ms{C}}(f, -) : \Hom_{\Ms{C}}(B, -) \longrightarrow \Hom_{\Ms{C}}(A, -)
\end{equation*} と表わせることを意味する.
ここで, 各対象 $T \in \Ob{\Ms{C}}$ と各 $(g : B \rightarrow T) \in \Hom_{\Ms{C}}(B, T)$ に対して,
\begin{equation*}
\Hom_{\Ms{C}}(f, T)(g) = g \circ f \in \Hom_{\Ms{C}}(A, T)
\end{equation*} である.
次の結果は米田の補題からの直接の結果として導かれる.
定理 (米田埋め込み).$\,$ (i)$\,$ 任意の $\Ms{C}$ の射 $f : A \rightarrow B$ に, $f$ から導かれる写像
\begin{equation*}
\Hom_{\Ms{C}}(f, -) : \Hom_{\Ms{C}}(B, -) \longrightarrow \Hom_{\Ms{C}}(A, -)
\end{equation*} を対応させる. このとき $\Hom_{\Ms{C}}(f, -)$ は自然変換であり, 写像
\begin{alignat*}{2}
\Ms{C}\qq & \longrightarrow & \qq\Func{\Ms{C}}{\Mb{Set}} \\
A\qq & \longmapsto & \Hom_{\Ms{C}}(A, -)
\end{alignat*} は充満忠実な反変関手である.
(ii)$\,$ 任意の $\Ms{C}$ の射 $f : A \rightarrow B$ に, $f$ から導かれる写像
\begin{equation*}
\Hom_{\Ms{C}}(-, f) : \Hom_{\Ms{C}}(-, A) \longrightarrow \Hom_{\Ms{C}}(-, B)
\end{equation*} を対応させる. このとき $\Hom_{\Ms{C}}(-, f)$ は自然変換であり, 写像
\begin{alignat*}{2}
\Ms{C}\qq & \longrightarrow & \qq\Func{\Opp{\Ms{C}}}{\Mb{Set}} \\
A\qq & \longmapsto & \Hom_{\Ms{C}}(-, A)\qq
\end{alignat*} は充満忠実な共変関手である.
まとめると, この命題によって充満忠実な反変関手
\begin{alignat*}{2}
\Ms{C} \hspace{8mm} & \q\longrightarrow\q & \Func{\Ms{C}}{\Mb{Set}} \hspace{30mm} \\
A \hspace{8mm} & \q\longmapsto\q & \Hom_{\Ms{C}}(A, -) \hspace{30mm} \\
(f : A \rightarrow B) & \q\longmapsto\q & (\Hom_{\Ms{C}}(f, -) : \Hom_{\Ms{C}}(B, -) \rightarrow \Hom_{\Ms{C}}(A, -)),
\end{alignat*} と充満忠実な共変関手
\begin{alignat*}{2}
\Ms{C} \hspace{8mm} & \q\longrightarrow\q & \Func{\Opp{\Ms{C}}}{\Mb{Set}} \hspace{27mm} \\
A \hspace{8mm} & \q\longmapsto\q & \Hom_{\Ms{C}}(-, A) \hspace{30mm} \\
(f : A \rightarrow B) & \q\longmapsto\q & (\Hom_{\Ms{C}}(-, f) : \Hom_{\Ms{C}}(-, A) \rightarrow \Hom_{\Ms{C}}(-, B))
\end{alignat*} が得られたことになる. これらの関手を 米田埋め込み (Yoneda embedding)と呼ぶ.
(i) によって与えられた写像について考察する.
$f : S \rightarrow T$ を $\Ms{C}$ の射とするとき, (i) による $f$ に対応する自然変換の, 対象 $A \in \Ob{\Ms{C}}$ における値
\begin{equation*}
\Hom_{\Ms{C}}(f, A) : \Hom_{\Ms{C}}(T, A) \longrightarrow \Hom_{\Ms{C}}(S, A)
\end{equation*} は, 各 $(x : T \rightarrow A) \in \Hom_{\Ms{C}}(T, A)$ を
\begin{equation*}
\Hom_{\Ms{C}}(f, A)(x) = (x \circ f : S \rightarrow A) \in \Hom_{\Ms{C}}(S, A)
\end{equation*} に移す. これを $A$ の "元" $x$ に $f$ が右側から作用することによって $A$ の別の "元" $x \circ f$ が得られると解釈すると, $\Hom_{\Ms{C}}(f, A)$ は $A$ の元の $f$ に沿った "パラメーター変換" と捉えることができる.
一方 $f : A \rightarrow B$ としたとき, (ii) によって与えられた自然変換の対象 $T \in \Ob{\Ms{C}}$ における値
\begin{equation*}
\Hom_{\Ms{C}}(T, f) : \Hom_{\Ms{C}}(T, A) \longrightarrow \Hom_{\Ms{C}}(T, B)
\end{equation*} は各 $(x : T \rightarrow A) \in \Hom_{\Ms{C}}(T, A)$ を
\begin{equation*}
\Hom_{\Ms{C}}(T, f)(x) = (f \circ x : T \rightarrow B) \in \Hom_{\Ms{C}}(T, B)
\end{equation*} に移す. つまり, $\Hom_{\Ms{C}}(T, f)$ は $A$ の "元" $x$ を $B$ の "元" $f \circ x$ に移す. このように解釈すると, 米田埋め込みが忠実 (単射) であることから, $f : A \rightarrow B$ は "本質的に $\Hom_{\Ms{C}}(-, f)$ に等しい" と言うことができる.
さらに, 米田埋め込みが充満 (全射) であるという事実から, 冒頭でも述べたように, 任意の自然変換
\begin{equation*}
\lambda : \Hom_{\Ms{C}}(-, A) \longrightarrow \Hom_{\Ms{C}}(-, B)
\end{equation*} に対して, ある射 $(f : A \rightarrow B) \in \Hom_{\Ms{C}}(A, B)$ が定まること, そしてこの射は自然変換 $\lambda$ の $A$ における値
\begin{equation*}
\lambda A : \Hom_{\Ms{C}}(A, A) \longrightarrow \Hom_{\Ms{C}}(A, B)
\end{equation*} による $\Id{A}$ の像であること, つまり
\begin{equation*}
f = \lambda A(\Id{A})
\end{equation*} であることを意味する.
以上のことを念頭において, 自然変換 $\Hom_{\Ms{C}}(f, -)$ および $\Hom_{\Ms{C}}(-, f)$ を $f$ の言葉で述べてみる. ここでは $\Hom_{\Ms{C}}(-, f)$ について記す.
任意の $A$ の "元" $x : T \rightarrow A$ と任意の射 $t : S \rightarrow T$ に対して, 自然変換 $\lambda = \Hom_{\Ms{C}}(-, f)$ が図式
\begin{equation*}
\begin{xy}
\xymatrix@=48pt {
\Hom_{\Ms{C}}(A, A) \ar[d]_{\Hom_{\Ms{C}}(t, A)} \ar[r]^{\Hom_{\Ms{C}}(T, f)} & \Hom_{\Ms{C}}(T, B) \ar[d]^{\Hom_{\Ms{C}}(t, B)} \\
\Hom_{\Ms{C}}(S, A) \ar[r]_{\Hom_{\Ms{C}}(S, f)} & \Hom_{\Ms{C}}(S, B)
}
\end{xy}
\end{equation*} を可換にすることより, 2 つの経路での計算結果
\begin{align*}
& \Hom_{\Ms{C}}(S, f) \circ \Hom_{\Ms{C}}(t, A)(x) = f \circ (x \circ t), \\
& \Hom_{\Ms{C}}(t, B) \circ \Hom_{\Ms{C}}(T, f)(x) = (f \circ x) \circ t
\end{align*} が等しい, つまり
\begin{equation*}
f \circ (x \circ t) = (f \circ x) \circ t
\end{equation*} が成り立つ.
この式は, $A$ の "元" $x$ に $t$ を右から作用させて $(x \circ t)$ に移した後に $f$ で $B$ の "元" に移した結果 $f \circ (x \circ t)$ と, $A$ の "元" $x$ を $f$ によって $B$ の "元" $(f \circ x)$ に移した後に $t$ を右から作用させた結果 $(f \circ x) \circ t$ が等しいと解釈することができる.
言い換えれば, $\Ms{C}$ の任意の射は, その米田埋め込みを介して得られる自然変換としての要請から, 任意のパラメーター変換に関して可換性を保つという側面から特徴付けられる.
このことと共に, 関手 $\Hom_{\Ms{C}}(-, A)$ から関手 $\Hom_{\Ms{C}}(-, B)$ への自然変換という, ある意味で捉え所のないものが, それよりは捉えやすい $\Ms{C}$ の射の集合 $\Hom_{\Ms{C}}(A, B)$ によって完全に決定されるという事実も強力である.
【このカテゴリーの最新記事】
- no image
- no image
- no image
- no image
- no image