\begin{equation*}
\DeclareMathOperator{\Ar}{Ar}
\DeclareMathOperator{\Arr}{Arr}
\DeclareMathOperator{\Card}{card}
\DeclareMathOperator{\Codomain}{cod}
\DeclareMathOperator{\Cone}{Cone}
\DeclareMathOperator{\Domain}{dom}
\DeclareMathOperator{\Ob}{Ob}
\newcommand{\Cdot}{\,\cdot^{\mathrm{op}}}
\newcommand{\Cocone}{\mathrm{Cocone}}
\newcommand{\Cone}{\mathrm{Cone}}
\newcommand{\Colim}{\mathrm{colim}\,}
\newcommand{\CommaCat}[2]{(#1/#2)}
\newcommand{\Eqclass}[4]{{#1#2#3}_{#4}}
\newcommand{\EqCls}[2]{{\left[#1\right]}_{#2}}
\newcommand{\Eqcls}[1]{\left[#1\right]}
\newcommand{\FnRest}[2]{{#1}|{#2}}
\newcommand{\Func}[2]{\mathrm{Func}(#1,#2)}
\newcommand{\g}{\varg}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\In}{\mathrm{incl}}
\newcommand{\Inc}[2]{\mathrm{incl}\left(#1,#2\right)}
\newcommand{\Incl}[2]{\mathrm{incl}_{#1}^{#2}}
\newcommand{\InclArrow}[2]{\morphism(0,0)/>->/<450,0>[\Incl{#1}{#2} : {#1}\,\,`{#2};]}
\newcommand{\Lb}[1]{\mathrm{lb}(#1)}
\newcommand{\Lowerset}[1]{\downarrow\!\!{#1}}
\newcommand{\Mb}[1]{\mathbf{#1}}
\newcommand{\Mbb}[1]{\mathbb{#1}}
\newcommand{\Mlb}[1]{\mathrm{mlb}(#1)}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Mt}[1]{\mathtt{#1}}
\newcommand{\Mub}[1]{\mathrm{mub}(#1)}
\newcommand{\Nat}{\mathrm{Nat}}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Prj}[2]{\mathrm{proj}\left(#1,#2\right)}
\newcommand{\Proj}[2]{\mathrm{proj}^{#1}_{#2}}
\newcommand{\Pw}{\mathbf{P}}
\newcommand{\Rn}[1]{{\bmdefine{R}}^{#1}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{\Rel}[1]{\langle{#1}\rangle}
\newcommand{\Rest}[2]{{#1}|{#2}}
\newcommand{\SkelCat}[1]{\mathrm{sk}(#1)}
\newcommand{\Slash}[1]{{\ooalign{\hfil/\hfil\crcr$#1$}}}
\newcommand{\SliCat}[2]{{#1}\,\big/\,{#2}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\Sub}{\mathrm{Sub}}
\newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
\newcommand{\TwArCat}[1]{\mathrm{Tw}(#1)}
\newcommand{\Ub}[1]{\mathrm{ub}(#1)}
\newcommand{\Upperset}[1]{\uparrow\!\!{#1}}
\newcommand{\VectCat}[1]{#1 \mathchar`- \mathbf{Vect}}
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Mon}{\mathbf{Mon}}
\newcommand{\POs}{\mathbf{Poset}}
\newcommand{\Psh}{\mathbf{Psh}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Sh}{\mathbf{Sh}}
\newcommand{\Top}{\mathbf{Top}}
\newcommand{\A}{\mathscr{A}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\C}{\mathscr{C}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\E}{\mathscr{E}}
\newcommand{\F}{\mathscr{F}}
\newcommand{\sH}{\mathscr{H}}
\newcommand{\I}{\mathscr{I}}
\newcommand{\J}{\mathscr{J}}
\newcommand{\K}{\mathscr{K}}
\newcommand{\sL}{\mathscr{L}}
\newcommand{\M}{\mathscr{M}}
\newcommand{\N}{\mathscr{N}}
\newcommand{\sO}{\mathscr{O}}
\newcommand{\sP}{\mathscr{P}}
\newcommand{\R}{\mathscr{R}}
\newcommand{\sS}{\mathscr{S}}
\newcommand{\T}{\mathscr{T}}
\newcommand{\U}{\mathscr{U}}
\newcommand{\V}{\mathscr{V}}
\newcommand{\W}{\mathscr{W}}
\newcommand{\X}{\mathscr{X}}
\newcommand{\Y}{\mathscr{Y}}
\newcommand{\Z}{\mathscr{Z}}
0 < p < q^2 < 1
\end{equation*} を満たすものを使う. このような有理数は存在するのだが, 実際にどうやれば求まるのか考えてみた.
$0 < p < 1$ だから $1-p > 0$ である. このことにより, 正の整数 $n$ で
\begin{equation*}
n(1-p) \ge 2
\end{equation*} を満足するものが存在する (アルキメデスの公理). これより
\begin{align*}
1-p & \ge \frac{2}{n} = \frac{2n}{n^2} > \frac{2n-1}{n^2}, \\
p & < 1-\frac{2n-1}{n^2}=\frac{n^2-2n+1}{n^2} = \left(\!\frac{n-1}{n}\!\right)^2 < 1
\end{align*} が成り立つ. したがって
\begin{equation*}
q=\frac{n-1}{n}
\end{equation*} とおけばよい.
簡単にまとめたが考え付くまでに結構苦労している. 長い間使っていなかった脳の部分を久し振りに動かした感じがする. この感覚が続いてくれるといい.
タグ: アルキメデスの公理
【このカテゴリーの最新記事】
- no image
- no image
- no image
- no image
- no image