ファン
検索
<< 2017年04月 >>
1
2 3 4 5 6 7 8
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事 (59)
社会復帰 (22)
(44)
コンピューター (211)
(1463)
借金 (8)
勉強 (13)
(13)
数学 (97)
運動 (8)
日常生活 (1407)
(204)
健康 (38)
読書 (21)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村

2017年04月20日

夕方まで寝込む 〜 やや回復する

朝から体調不良. 抑鬱感はだいぶ治まってきたが, 疲労感・倦怠感が強い.
夕方まで横になって休む.

昼過ぎから少しずつ抑鬱感が軽くなってきた.
数学のこととか絵のこととか考える.

夕方, 起きてシャワーを浴びる.
少し数学をやる.

夕食はブロッコリーと茄子のトマトスパゲッティ.
今日は夕方からの鬱は軽い. 良かった.

明日は早起きがしたいので食器の後片付けをして布団に入る.
posted by 底彦 at 21:24 | Comment(0) | TrackBack(0) | 日常生活

HP-42S: 数値の表示形式 ── ALL (全表示モード)

今勉強している HP-42S という電卓では, 数値の表示方法は次のようになっている.
表示には 12 桁の数値部分と 3 桁の指数部分が用いられる.
($a$) 数値を指定の桁数に丸めるフォーマット. 3 種類ある.
 ・ FIX (固定小数点表示)
 ・ SCI (科学向け指数表示)
 ・ ENG (工学式指数表示)
($b$) 数値の全桁 (数値部分 12 桁を用いる) を表示するフォーマット. ALL フォーマットと呼ばれる.

HP-42S では絶対値が $1 \times 10^{-499}$ から $9.99999999999 \times 10^{499}$ の範囲にある数値を表示できる. 結果が $9.99999999999 \times 10^{499}$ を超えるような計算を行った場合, Out of Range というエラーメッセージが表示される. 結果が $1 \times 10^{-499}$ より小さくなるような計算を行った場合には $0$ に置き換えられる.

これらのうち, ALL フォーマットで表示される数 (全表示モード) について調べてみた.

12 桁の数値部分が使われる. 3 桁の指数部分は使われない.
10 進表示の各位の数を $i_{p}$ ($i_{p} = 0,..., 9$; $p$ は添数) で, 小数点以下の各位の数を $f_{q}$ ($f_{q} = 0,..., 9$; $q$ は添数) で表わすことにすれば, 全表示の数は一般に次のように表わすことができる.
\begin{equation*}
i_{m} \cdots i_{0} . f_{1} \cdots f_{n} \quad
(m, n \in \mathbb{Z};\, m = 0,..., 11;\, n = 1,...,11;\, m + n = 11)
\end{equation*}
具体的に列挙すると以下のようになる.
(1) $i_{11} \cdots i_{0}: \quad 10^{0} = 1$ 刻み, 小数点以下無しで $-(10^{12}-1)$ から $10^{12}-1$ まで.
\begin{equation*}
-999,999,999,999,\, -999,999,999,999,... \\
...,\, -1,\, 0,\, 1,..., \\
...,\, 999,999,999,998,\, 999,999,999,999
\end{equation*}
(2) $i_{10} \cdots i_{0} . f_{1}: \quad 10^{-1} = 0.1$ 刻みで $-(10^{11}-0.1)$ から $10^{11}-0.1$ まで.
\begin{equation*}
-99,999,999,999.9,\, -99,999,999,999.8,... \\
...,\, -0.1,\, 0.0,\, 0.1,... \\
...,\, 99,999,999,999.8,\, 99,999,999,999.9
\end{equation*}
(3) $i_{9} \cdots i_{0} . f_{1}f_{2}: \quad 10^{-2} = 0.01$ 刻みで $-(10^{10}-0.01)$ から $10^{10}-0.01$ まで.
\begin{equation*}
-9,999,999,999.99,\, -9,999,999,999.98,... \\
...,\, -0.01,\, 0.00,\, 0.01,... \\
...,\, 9,999,999,999.98,\, 9,999,999,999.99
\end{equation*}
(4) $i_{8} \cdots i_{0} . f_{1}f_{2}f_{3}: \quad 10^{-3} = 0.001$ 刻みで $-(10^{9}-0.001)$ から $10^{9}-0.001$ まで.
\begin{equation*}
-999,999,999.999,\, -999,999,999.998,... \\
...,\, -0.001,\, 0.000,\, 0.001,... \\
...,\, 999,999,999.998,\, 999,999,999.999
\end{equation*}
(5) $i_{7} \cdots i_{0} . f_{1}f_{2}f_{3}f_{4}: \quad 10^{-4} = 0.0001$ 刻みで $-(10^{8}-0.0001)$ から $10^{8}-0.0001$ まで.
\begin{equation*}
-99,999,999.9999,\, -99,999,999.9998,... \\
...,\, -0.0001,\, 0.0000,\, 0.0001,... \\
...,\, 99,999,999.9998,\, 99,999,999.9999
\end{equation*}
(6) $i_{6} \cdots i_{0} . f_{1}f_{2}f_{3}f_{4}f_{5}: \quad 10^{-5} = 0.00001$ 刻みで $-(10^{7}-0.00001)$ から $10^{7}-0.00001$ まで.
\begin{equation*}
-9,999,999.99999,\, -9,999,999.99998,... \\
...,\, -0.00001,\, 0.00000,\, 0.00001,... \\
...,\, 9,999,999.99998,\, 9,999,999.99999
\end{equation*}
(7) $i_{5} \cdots i_{0} . f_{1}f_{2}f_{3}f_{4}f_{5}f_{6}: \quad 10^{-6} = 0.000001$ 刻みで $-(10^{6}-0.000001)$ から $10^{6}-0.000001$ まで.
\begin{equation*}
-999,999.999999,\, -999,999.999998,... \\
...,\, -0.000001,\, 0.000000,\, 0.000001,... \\
...,\, 999,999.999998,\, 999,999.999999
\end{equation*}
(8) $i_{4} \cdots i_{0} . f_{1}f_{2}f_{3}f_{4}f_{5}f_{6}f_{7}: \quad 10^{-7} = 0.0000001$ 刻みで $-(10^{5}-0.0000001)$ から $10^{5}-0.0000001$ まで.
\begin{equation*}
-99,999.9999999,\, -99,999.9999998,... \\
...,\, -0.0000001,\, 0.0000000,\, 0.0000001,... \\
...,\, 99,999.9999998,\, 99,999.9999999
\end{equation*}
(9) $i_{3}i_{2}i_{1}i_{0} . f_{1} \cdots f_{8}: \quad 10^{-8} = 0.00000001$ 刻みで $-(10000-10^{-8})$ から $10000-10^{-8}$ まで.
\begin{equation*}
-9,999.99999999,\, -9,999.99999998,... \\
...,\, -0.00000001,\, 0.00000000,\, 0.00000001,... \\
...,\, 9,999.99999998,\, 9,999.99999999
\end{equation*}
(10) $i_{2}i_{1}i_{0} . f_{1} \cdots f_{9}: \quad 10^{-9} = 0.000000001$ 刻みで $-(1000-10^{-9})$ から $1000-10^{-9}$ まで.
\begin{equation*}
-999.999999999,\, -999.999999998,... \\
...,\, -0.000000001,\, 0.000000000,\, 0.000000001,... \\
...,\, 999.999999998,\, 999.999999999
\end{equation*}
(11) $i_{1}i_{0} . f_{1} \cdots f_{10}: \quad 10^{-10} = 0.0000000001$ 刻みで $-(100-10^{-10})$ から $100-10^{-10}$ まで.
\begin{equation*}
-99.9999999999,\, -99.9999999998,... \\
...,\, -0.0000000001,\, 0.0000000000,\, 0.0000000001,... \\
...,\, 99.9999999998,\, 99.9999999999
\end{equation*}
(12) $i_{0} . f_{1} \cdots f_{11}: \quad 10^{-11} = 0.0000000001$ 刻みで $-(10-10^{-11})$ から $10-10^{-11}$ まで.
\begin{equation*}
-9.99999999999,\, -9.99999999998,... \\
...,\, -0.00000000001,\, 0.00000000000,\, 0.00000000001,... \\
...,\, 9.99999999998,\, 9.99999999999
\end{equation*}
書き出して眺めてみると面白い並びになっている.
ここで行っているのは, 無限の対象である実数を有限の世界で表現しようという試みであり, そう思うと興味が尽きない. じっくり考えてみたい.
奥が深そうだ.

こんな感じで今度は指数表示の場合も調べてみる.
posted by 底彦 at 20:30 | Comment(0) | TrackBack(0) |
Build a Mobile Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: