Package cloud.google.com/go/vertexai/genai (v0.4.0)

Package genai is a client for the generative VertexAI model.

Blob

  type 
  
 Blob 
  
 struct 
  
 { 
  
 // Required. The IANA standard MIME type of the source data. 
  
 MIMEType 
  
  string 
 
  
 // Required. Raw bytes for media formats. 
  
 Data 
  
 [] 
  byte 
 
 } 
 

Blob contains raw media bytes.

Text should not be sent as raw bytes, use the 'text' field.

func ImageData

  func 
  
 ImageData 
 ( 
 format 
  
  string 
 
 , 
  
 data 
  
 [] 
  byte 
 
 ) 
  
  Blob 
 
 

ImageData is a convenience function for creating an image Blob for input to a model. The format should be the second part of the MIME type, after "image/". For example, for a PNG image, pass "png".

BlockedError

  type 
  
 BlockedError 
  
 struct 
  
 { 
  
 // If non-nil, the model's response was blocked. 
  
 // Consult the Candidate and SafetyRatings fields for details. 
  
 Candidate 
  
 * 
  Candidate 
 
  
 // If non-nil, there was a problem with the prompt. 
  
 PromptFeedback 
  
 * 
  PromptFeedback 
 
 } 
 

A BlockedError indicates that the model's response was blocked. There can be two underlying causes: the prompt or a candidate response.

func (*BlockedError) Error

  func 
  
 ( 
 e 
  
 * 
  BlockedError 
 
 ) 
  
 Error 
 () 
  
  string 
 
 

BlockedReason

  type 
  
 BlockedReason 
  
  int32 
 
 

BlockedReason is blocked reason enumeration.

BlockedReasonUnspecified, BlockedReasonSafety, BlockedReasonOther

  const 
  
 ( 
  
 // BlockedReasonUnspecified means unspecified blocked reason. 
  
 BlockedReasonUnspecified 
  
  BlockedReason 
 
  
 = 
  
 0 
  
 // BlockedReasonSafety means candidates blocked due to safety. 
  
 BlockedReasonSafety 
  
  BlockedReason 
 
  
 = 
  
 1 
  
 // BlockedReasonOther means candidates blocked due to other reason. 
  
 BlockedReasonOther 
  
  BlockedReason 
 
  
 = 
  
 2 
 ) 
 

func (BlockedReason) String

  func 
  
 ( 
 v 
  
  BlockedReason 
 
 ) 
  
 String 
 () 
  
  string 
 
 

Candidate

  type 
  
 Candidate 
  
 struct 
  
 { 
  
 // Output only. Index of the candidate. 
  
 Index 
  
  int32 
 
  
 // Output only. Content parts of the candidate. 
  
 Content 
  
 * 
  Content 
 
  
 // Output only. The reason why the model stopped generating tokens. 
  
 // If empty, the model has not stopped generating the tokens. 
  
 FinishReason 
  
  FinishReason 
 
  
 // Output only. List of ratings for the safety of a response candidate. 
  
 // 
  
 // There is at most one rating per category. 
  
 SafetyRatings 
  
 [] 
 * 
  SafetyRating 
 
  
 // Output only. Describes the reason the mode stopped generating tokens in 
  
 // more detail. This is only filled when `finish_reason` is set. 
  
 FinishMessage 
  
  string 
 
  
 // Output only. Source attribution of the generated content. 
  
 CitationMetadata 
  
 * 
  CitationMetadata 
 
 } 
 

Candidate is a response candidate generated from the model.

ChatSession

  type 
  
 ChatSession 
  
 struct 
  
 { 
  
 History 
  
 [] 
 * 
  Content 
 
  
 // contains filtered or unexported fields 
 } 
 

A ChatSession provides interactive chat.

Example

  package 
  
 main 
 import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "log" 
  
 "cloud.google.com/go/vertexai/genai" 
  
 "google.golang.org/api/iterator" 
 ) 
 const 
  
 projectID 
  
 = 
  
 "your-project" 
 const 
  
 model 
  
 = 
  
 "some-model" 
 const 
  
 location 
  
 = 
  
 "some-location" 
 func 
  
 main 
 () 
  
 { 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 genai 
 . 
  NewClient 
 
 ( 
 ctx 
 , 
  
 projectID 
 , 
  
 location 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 model 
  
 := 
  
 client 
 . 
 GenerativeModel 
 ( 
 model 
 ) 
  
 cs 
  
 := 
  
 model 
 . 
  StartChat 
 
 () 
  
 send 
  
 := 
  
 func 
 ( 
 msg 
  
 string 
 ) 
  
 * 
 genai 
 . 
  GenerateContentResponse 
 
  
 { 
  
 fmt 
 . 
 Printf 
 ( 
 "== Me: %s\n== Model:\n" 
 , 
  
 msg 
 ) 
  
 res 
 , 
  
 err 
  
 := 
  
 cs 
 . 
  SendMessage 
 
 ( 
 ctx 
 , 
  
 genai 
 . 
  Text 
 
 ( 
 msg 
 )) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 return 
  
 res 
  
 } 
  
 res 
  
 := 
  
 send 
 ( 
 "Can you name some brands of air fryer?" 
 ) 
  
 printResponse 
 ( 
 res 
 ) 
  
 iter 
  
 := 
  
 cs 
 . 
  SendMessageStream 
 
 ( 
 ctx 
 , 
  
 genai 
 . 
  Text 
 
 ( 
 "Which one of those do you recommend?" 
 )) 
  
 for 
  
 { 
  
 res 
 , 
  
 err 
  
 := 
  
 iter 
 . 
 Next 
 () 
  
 if 
  
 err 
  
 == 
  
 iterator 
 . 
 Done 
  
 { 
  
 break 
  
 } 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 printResponse 
 ( 
 res 
 ) 
  
 } 
  
 for 
  
 i 
 , 
  
 c 
  
 := 
  
 range 
  
 cs 
 . 
 History 
  
 { 
  
 log 
 . 
 Printf 
 ( 
 "    %d: %+v" 
 , 
  
 i 
 , 
  
 c 
 ) 
  
 } 
  
 res 
  
 = 
  
 send 
 ( 
 "Why do you like the Philips?" 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 printResponse 
 ( 
 res 
 ) 
 } 
 func 
  
 printResponse 
 ( 
 resp 
  
 * 
 genai 
 . 
  GenerateContentResponse 
 
 ) 
  
 { 
  
 for 
  
 _ 
 , 
  
 cand 
  
 := 
  
 range 
  
 resp 
 . 
 Candidates 
  
 { 
  
 for 
  
 _ 
 , 
  
 part 
  
 := 
  
 range 
  
 cand 
 . 
  Content 
 
 . 
 Parts 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 part 
 ) 
  
 } 
  
 } 
  
 fmt 
 . 
 Println 
 ( 
 "---" 
 ) 
 } 
 

func (*ChatSession) SendMessage

  func 
  
 ( 
 cs 
  
 * 
  ChatSession 
 
 ) 
  
 SendMessage 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 parts 
  
 ... 
  Part 
 
 ) 
  
 ( 
 * 
  GenerateContentResponse 
 
 , 
  
  error 
 
 ) 
 

SendMessage sends a request to the model as part of a chat session.

func (*ChatSession) SendMessageStream

  func 
  
 ( 
 cs 
  
 * 
  ChatSession 
 
 ) 
  
 SendMessageStream 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 parts 
  
 ... 
  Part 
 
 ) 
  
 * 
  GenerateContentResponseIterator 
 
 

SendMessageStream is like SendMessage, but with a streaming request.

Citation

  type 
  
 Citation 
  
 struct 
  
 { 
  
 // Output only. Start index into the content. 
  
 StartIndex 
  
  int32 
 
  
 // Output only. End index into the content. 
  
 EndIndex 
  
  int32 
 
  
 // Output only. Url reference of the attribution. 
  
 URI 
  
  string 
 
  
 // Output only. Title of the attribution. 
  
 Title 
  
  string 
 
  
 // Output only. License of the attribution. 
  
 License 
  
  string 
 
  
 // Output only. Publication date of the attribution. 
  
 PublicationDate 
  
  civil 
 
 . 
  Date 
 
 } 
 

Citation contains source attributions for content.

  type 
  
 CitationMetadata 
  
 struct 
  
 { 
  
 // Output only. List of citations. 
  
 Citations 
  
 [] 
 * 
  Citation 
 
 } 
 

CitationMetadata is a collection of source attributions for a piece of content.

Client

  type 
  
 Client 
  
 struct 
  
 { 
  
 // contains filtered or unexported fields 
 } 
 

A Client is a Google Vertex AI client.

func NewClient

  func 
  
 NewClient 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 projectID 
 , 
  
 location 
  
  string 
 
 , 
  
 opts 
  
 ... 
 option 
 . 
 ClientOption 
 ) 
  
 ( 
 * 
  Client 
 
 , 
  
  error 
 
 ) 
 

NewClient creates a new Google Vertex AI client.

Clients should be reused instead of created as needed. The methods of Client are safe for concurrent use by multiple goroutines.

You may configure the client by passing in options from the [google.golang.org/api/option] package.

func (*Client) Close

  func 
  
 ( 
 c 
  
 * 
  Client 
 
 ) 
  
 Close 
 () 
  
  error 
 
 

Close closes the client.

func (*Client) GenerativeModel

  func 
  
 ( 
 c 
  
 * 
  Client 
 
 ) 
  
 GenerativeModel 
 ( 
 name 
  
  string 
 
 ) 
  
 * 
  GenerativeModel 
 
 

GenerativeModel creates a new instance of the named model.

Content

  type 
  
 Content 
  
 struct 
  
 { 
  
 // Optional. The producer of the content. Must be either 'user' or 'model'. 
  
 // 
  
 // Useful to set for multi-turn conversations, otherwise can be left blank 
  
 // or unset. 
  
 Role 
  
  string 
 
  
 // Required. Ordered `Parts` that constitute a single message. Parts may have 
  
 // different IANA MIME types. 
  
 Parts 
  
 [] 
  Part 
 
 } 
 

Content is the base structured datatype containing multi-part content of a message.

A Content includes a role field designating the producer of the Content and a parts field containing multi-part data that contains the content of the message turn.

CountTokensResponse

  type 
  
 CountTokensResponse 
  
 struct 
  
 { 
  
 // The total number of tokens counted across all instances from the request. 
  
 TotalTokens 
  
  int32 
 
  
 // The total number of billable characters counted across all instances from 
  
 // the request. 
  
 TotalBillableCharacters 
  
  int32 
 
 } 
 

CountTokensResponse is response message for [PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].

FileData

  type 
  
 FileData 
  
 struct 
  
 { 
  
 // Required. The IANA standard MIME type of the source data. 
  
 MIMEType 
  
  string 
 
  
 // Required. URI. 
  
 FileURI 
  
  string 
 
 } 
 

FileData is URI based data.

FinishReason

  type 
  
 FinishReason 
  
  int32 
 
 

FinishReason is the reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.

FinishReasonUnspecified, FinishReasonStop, FinishReasonMaxTokens, FinishReasonSafety, FinishReasonRecitation, FinishReasonOther

  const 
  
 ( 
  
 // FinishReasonUnspecified means the finish reason is unspecified. 
  
 FinishReasonUnspecified 
  
  FinishReason 
 
  
 = 
  
 0 
  
 // FinishReasonStop means natural stop point of the model or provided stop sequence. 
  
 FinishReasonStop 
  
  FinishReason 
 
  
 = 
  
 1 
  
 // FinishReasonMaxTokens means the maximum number of tokens as specified in the request was reached. 
  
 FinishReasonMaxTokens 
  
  FinishReason 
 
  
 = 
  
 2 
  
 // FinishReasonSafety means the token generation was stopped as the response was flagged for safety 
  
 // reasons. NOTE: When streaming the Candidate.content will be empty if 
  
 // content filters blocked the output. 
  
 FinishReasonSafety 
  
  FinishReason 
 
  
 = 
  
 3 
  
 // FinishReasonRecitation means the token generation was stopped as the response was flagged for 
  
 // unauthorized citations. 
  
 FinishReasonRecitation 
  
  FinishReason 
 
  
 = 
  
 4 
  
 // FinishReasonOther means all other reasons that stopped the token generation 
  
 FinishReasonOther 
  
  FinishReason 
 
  
 = 
  
 5 
 ) 
 

func (FinishReason) String

  func 
  
 ( 
 v 
  
  FinishReason 
 
 ) 
  
 String 
 () 
  
  string 
 
 

FunctionCall

  type 
  
 FunctionCall 
  
 struct 
  
 { 
  
 // Required. The name of the function to call. 
  
 // Matches [FunctionDeclaration.name]. 
  
 Name 
  
  string 
 
  
 // Optional. Required. The function parameters and values in JSON object 
  
 // format. See [FunctionDeclaration.parameters] for parameter details. 
  
 Args 
  
 map 
 [ 
  string 
 
 ] 
  any 
 
 } 
 

FunctionCall is a predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values.

FunctionDeclaration

  type 
  
 FunctionDeclaration 
  
 struct 
  
 { 
  
 // Required. The name of the function to call. 
  
 // Must start with a letter or an underscore. 
  
 // Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum 
  
 // length of 64. 
  
 Name 
  
  string 
 
  
 // Optional. Description and purpose of the function. 
  
 // Model uses it to decide how and whether to call the function. 
  
 Description 
  
  string 
 
  
 // Optional. Describes the parameters to this function in JSON Schema Object 
  
 // format. Reflects the Open API 3.03 Parameter Object. string Key: the name 
  
 // of the parameter. Parameter names are case sensitive. Schema Value: the 
  
 // Schema defining the type used for the parameter. For function with no 
  
 // parameters, this can be left unset. Example with 1 required and 1 optional 
  
 // parameter: type: OBJECT properties: 
  
 //  param1: 
  
 //    type: STRING 
  
 //  param2: 
  
 //    type: INTEGER 
  
 // required: 
  
 //  - param1 
  
 Parameters 
  
 * 
  Schema 
 
 } 
 

FunctionDeclaration is structured representation of a function declaration as defined by the OpenAPI 3.0 specification . Included in this declaration are the function name and parameters. This FunctionDeclaration is a representation of a block of code that can be used as a Tool by the model and executed by the client.

FunctionResponse

  type 
  
 FunctionResponse 
  
 struct 
  
 { 
  
 // Required. The name of the function to call. 
  
 // Matches [FunctionDeclaration.name] and [FunctionCall.name]. 
  
 Name 
  
  string 
 
  
 // Required. The function response in JSON object format. 
  
 Response 
  
 map 
 [ 
  string 
 
 ] 
  any 
 
 } 
 

FunctionResponse is the result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction.

GenerateContentResponse

  type 
  
 GenerateContentResponse 
  
 struct 
  
 { 
  
 // Output only. Generated candidates. 
  
 Candidates 
  
 [] 
 * 
  Candidate 
 
  
 // Output only. Content filter results for a prompt sent in the request. 
  
 // Note: Sent only in the first stream chunk. 
  
 // Only happens when no candidates were generated due to content violations. 
  
 PromptFeedback 
  
 * 
  PromptFeedback 
 
  
 // Usage metadata about the response(s). 
  
 UsageMetadata 
  
 * 
  UsageMetadata 
 
 } 
 

GenerateContentResponse is the response from a GenerateContent or GenerateContentStream call.

GenerateContentResponseIterator

  type 
  
 GenerateContentResponseIterator 
  
 struct 
  
 { 
  
 // contains filtered or unexported fields 
 } 
 

GenerateContentResponseIterator is an iterator over GnerateContentResponse.

func (*GenerateContentResponseIterator) Next

Next returns the next response.

GenerationConfig

  type 
  
 GenerationConfig 
  
 struct 
  
 { 
  
 // Optional. Controls the randomness of predictions. 
  
 Temperature 
  
  float32 
 
  
 // Optional. If specified, nucleus sampling will be used. 
  
 TopP 
  
  float32 
 
  
 // Optional. If specified, top-k sampling will be used. 
  
 TopK 
  
  float32 
 
  
 // Optional. Number of candidates to generate. 
  
 CandidateCount 
  
  int32 
 
  
 // Optional. The maximum number of output tokens to generate per message. 
  
 MaxOutputTokens 
  
  int32 
 
  
 // Optional. Stop sequences. 
  
 StopSequences 
  
 [] 
  string 
 
 } 
 

GenerationConfig is generation config.

GenerativeModel

  type 
  
 GenerativeModel 
  
 struct 
  
 { 
  
  GenerationConfig 
 
  
 SafetySettings 
  
 [] 
 * 
  SafetySetting 
 
  
 Tools 
  
 [] 
 * 
  Tool 
 
  
 // contains filtered or unexported fields 
 } 
 

GenerativeModel is a model that can generate text. Create one with [Client.GenerativeModel], then configure it by setting the exported fields.

The model holds all the config for a GenerateContentRequest, so the GenerateContent method can use a vararg for the content.

func (*GenerativeModel) CountTokens

  func 
  
 ( 
 m 
  
 * 
  GenerativeModel 
 
 ) 
  
 CountTokens 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 parts 
  
 ... 
  Part 
 
 ) 
  
 ( 
 * 
  CountTokensResponse 
 
 , 
  
  error 
 
 ) 
 

CountTokens counts the number of tokens in the content.

Example

  package 
  
 main 
 import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "log" 
  
 "cloud.google.com/go/vertexai/genai" 
 ) 
 const 
  
 projectID 
  
 = 
  
 "your-project" 
 const 
  
 model 
  
 = 
  
 "some-model" 
 const 
  
 location 
  
 = 
  
 "some-location" 
 func 
  
 main 
 () 
  
 { 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 genai 
 . 
  NewClient 
 
 ( 
 ctx 
 , 
  
 projectID 
 , 
  
 location 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 model 
  
 := 
  
 client 
 . 
 GenerativeModel 
 ( 
 model 
 ) 
  
 resp 
 , 
  
 err 
  
 := 
  
 model 
 . 
 CountTokens 
 ( 
 ctx 
 , 
  
 genai 
 . 
  Text 
 
 ( 
 "What kind of fish is this?" 
 )) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 fmt 
 . 
 Println 
 ( 
 "Num tokens:" 
 , 
  
 resp 
 . 
 TotalTokens 
 ) 
 } 
 

func (*GenerativeModel) GenerateContent

  func 
  
 ( 
 m 
  
 * 
  GenerativeModel 
 
 ) 
  
 GenerateContent 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 parts 
  
 ... 
  Part 
 
 ) 
  
 ( 
 * 
  GenerateContentResponse 
 
 , 
  
  error 
 
 ) 
 

GenerateContent produces a single request and response.

Example

  package 
  
 main 
 import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "log" 
  
 "cloud.google.com/go/vertexai/genai" 
 ) 
 const 
  
 projectID 
  
 = 
  
 "your-project" 
 const 
  
 model 
  
 = 
  
 "some-model" 
 const 
  
 location 
  
 = 
  
 "some-location" 
 func 
  
 main 
 () 
  
 { 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 genai 
 . 
  NewClient 
 
 ( 
 ctx 
 , 
  
 projectID 
 , 
  
 location 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 model 
  
 := 
  
 client 
 . 
 GenerativeModel 
 ( 
 model 
 ) 
  
 model 
 . 
 Temperature 
  
 = 
  
 0.9 
  
 resp 
 , 
  
 err 
  
 := 
  
 model 
 . 
  GenerateContent 
 
 ( 
 ctx 
 , 
  
 genai 
 . 
  Text 
 
 ( 
 "What is the average size of a swallow?" 
 )) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 printResponse 
 ( 
 resp 
 ) 
 } 
 func 
  
 printResponse 
 ( 
 resp 
  
 * 
 genai 
 . 
  GenerateContentResponse 
 
 ) 
  
 { 
  
 for 
  
 _ 
 , 
  
 cand 
  
 := 
  
 range 
  
 resp 
 . 
 Candidates 
  
 { 
  
 for 
  
 _ 
 , 
  
 part 
  
 := 
  
 range 
  
 cand 
 . 
  Content 
 
 . 
 Parts 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 part 
 ) 
  
 } 
  
 } 
  
 fmt 
 . 
 Println 
 ( 
 "---" 
 ) 
 } 
 

func (*GenerativeModel) GenerateContentStream

  func 
  
 ( 
 m 
  
 * 
  GenerativeModel 
 
 ) 
  
 GenerateContentStream 
 ( 
 ctx 
  
  context 
 
 . 
  Context 
 
 , 
  
 parts 
  
 ... 
  Part 
 
 ) 
  
 * 
  GenerateContentResponseIterator 
 
 

GenerateContentStream returns an iterator that enumerates responses.

Example

  package 
  
 main 
 import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "log" 
  
 "cloud.google.com/go/vertexai/genai" 
  
 "google.golang.org/api/iterator" 
 ) 
 const 
  
 projectID 
  
 = 
  
 "your-project" 
 const 
  
 model 
  
 = 
  
 "some-model" 
 const 
  
 location 
  
 = 
  
 "some-location" 
 func 
  
 main 
 () 
  
 { 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 genai 
 . 
  NewClient 
 
 ( 
 ctx 
 , 
  
 projectID 
 , 
  
 location 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 model 
  
 := 
  
 client 
 . 
 GenerativeModel 
 ( 
 model 
 ) 
  
 iter 
  
 := 
  
 model 
 . 
  GenerateContentStream 
 
 ( 
 ctx 
 , 
  
 genai 
 . 
  Text 
 
 ( 
 "Tell me a story about a lumberjack and his giant ox. Keep it very short." 
 )) 
  
 for 
  
 { 
  
 resp 
 , 
  
 err 
  
 := 
  
 iter 
 . 
 Next 
 () 
  
 if 
  
 err 
  
 == 
  
 iterator 
 . 
 Done 
  
 { 
  
 break 
  
 } 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 log 
 . 
 Fatal 
 ( 
 err 
 ) 
  
 } 
  
 printResponse 
 ( 
 resp 
 ) 
  
 } 
 } 
 func 
  
 printResponse 
 ( 
 resp 
  
 * 
 genai 
 . 
  GenerateContentResponse 
 
 ) 
  
 { 
  
 for 
  
 _ 
 , 
  
 cand 
  
 := 
  
 range 
  
 resp 
 . 
 Candidates 
  
 { 
  
 for 
  
 _ 
 , 
  
 part 
  
 := 
  
 range 
  
 cand 
 . 
  Content 
 
 . 
 Parts 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 part 
 ) 
  
 } 
  
 } 
  
 fmt 
 . 
 Println 
 ( 
 "---" 
 ) 
 } 
 

func (*GenerativeModel) Name

  func 
  
 ( 
 m 
  
 * 
  GenerativeModel 
 
 ) 
  
 Name 
 () 
  
  string 
 
 

Name returns the name of the model.

func (*GenerativeModel) StartChat

  func 
  
 ( 
 m 
  
 * 
  GenerativeModel 
 
 ) 
  
 StartChat 
 () 
  
 * 
  ChatSession 
 
 

StartChat starts a chat session.

HarmBlockThreshold

  type 
  
 HarmBlockThreshold 
  
  int32 
 
 

HarmBlockThreshold specifies probability based thresholds levels for blocking.

HarmBlockUnspecified, HarmBlockLowAndAbove, HarmBlockMediumAndAbove, HarmBlockOnlyHigh, HarmBlockNone

  const 
  
 ( 
  
 // HarmBlockUnspecified means unspecified harm block threshold. 
  
 HarmBlockUnspecified 
  
  HarmBlockThreshold 
 
  
 = 
  
 0 
  
 // HarmBlockLowAndAbove means block low threshold and above (i.e. block more). 
  
 HarmBlockLowAndAbove 
  
  HarmBlockThreshold 
 
  
 = 
  
 1 
  
 // HarmBlockMediumAndAbove means block medium threshold and above. 
  
 HarmBlockMediumAndAbove 
  
  HarmBlockThreshold 
 
  
 = 
  
 2 
  
 // HarmBlockOnlyHigh means block only high threshold (i.e. block less). 
  
 HarmBlockOnlyHigh 
  
  HarmBlockThreshold 
 
  
 = 
  
 3 
  
 // HarmBlockNone means block none. 
  
 HarmBlockNone 
  
  HarmBlockThreshold 
 
  
 = 
  
 4 
 ) 
 

func (HarmBlockThreshold) String

  func 
  
 ( 
 v 
  
  HarmBlockThreshold 
 
 ) 
  
 String 
 () 
  
  string 
 
 

HarmCategory

  type 
  
 HarmCategory 
  
  int32 
 
 

HarmCategory specifies harm categories that will block the content.

HarmCategoryUnspecified, HarmCategoryHateSpeech, HarmCategoryDangerousContent, HarmCategoryHarassment, HarmCategorySexuallyExplicit

  const 
  
 ( 
  
 // HarmCategoryUnspecified means the harm category is unspecified. 
  
 HarmCategoryUnspecified 
  
  HarmCategory 
 
  
 = 
  
 0 
  
 // HarmCategoryHateSpeech means the harm category is hate speech. 
  
 HarmCategoryHateSpeech 
  
  HarmCategory 
 
  
 = 
  
 1 
  
 // HarmCategoryDangerousContent means the harm category is dangerous content. 
  
 HarmCategoryDangerousContent 
  
  HarmCategory 
 
  
 = 
  
 2 
  
 // HarmCategoryHarassment means the harm category is harassment. 
  
 HarmCategoryHarassment 
  
  HarmCategory 
 
  
 = 
  
 3 
  
 // HarmCategorySexuallyExplicit means the harm category is sexually explicit content. 
  
 HarmCategorySexuallyExplicit 
  
  HarmCategory 
 
  
 = 
  
 4 
 ) 
 

func (HarmCategory) String

  func 
  
 ( 
 v 
  
  HarmCategory 
 
 ) 
  
 String 
 () 
  
  string 
 
 

HarmProbability

  type 
  
 HarmProbability 
  
  int32 
 
 

HarmProbability specifies harm probability levels in the content.

HarmProbabilityUnspecified, HarmProbabilityNegligible, HarmProbabilityLow, HarmProbabilityMedium, HarmProbabilityHigh

  const 
  
 ( 
  
 // HarmProbabilityUnspecified means harm probability unspecified. 
  
 HarmProbabilityUnspecified 
  
  HarmProbability 
 
  
 = 
  
 0 
  
 // HarmProbabilityNegligible means negligible level of harm. 
  
 HarmProbabilityNegligible 
  
  HarmProbability 
 
  
 = 
  
 1 
  
 // HarmProbabilityLow means low level of harm. 
  
 HarmProbabilityLow 
  
  HarmProbability 
 
  
 = 
  
 2 
  
 // HarmProbabilityMedium means medium level of harm. 
  
 HarmProbabilityMedium 
  
  HarmProbability 
 
  
 = 
  
 3 
  
 // HarmProbabilityHigh means high level of harm. 
  
 HarmProbabilityHigh 
  
  HarmProbability 
 
  
 = 
  
 4 
 ) 
 

func (HarmProbability) String

  func 
  
 ( 
 v 
  
  HarmProbability 
 
 ) 
  
 String 
 () 
  
  string 
 
 

Part

  type 
  
 Part 
  
 interface 
  
 { 
  
 // contains filtered or unexported methods 
 } 
 

A Part is either a Text, a Blob, or a FileData.

PromptFeedback

  type 
  
 PromptFeedback 
  
 struct 
  
 { 
  
 // Output only. Blocked reason. 
  
 BlockReason 
  
  BlockedReason 
 
  
 // Output only. Safety ratings. 
  
 SafetyRatings 
  
 [] 
 * 
  SafetyRating 
 
  
 // Output only. A readable block reason message. 
  
 BlockReasonMessage 
  
  string 
 
 } 
 

PromptFeedback contains content filter results for a prompt sent in the request.

SafetyRating

  type 
  
 SafetyRating 
  
 struct 
  
 { 
  
 // Output only. Harm category. 
  
 Category 
  
  HarmCategory 
 
  
 // Output only. Harm probability levels in the content. 
  
 Probability 
  
  HarmProbability 
 
  
 // Output only. Indicates whether the content was filtered out because of this 
  
 // rating. 
  
 Blocked 
  
  bool 
 
 } 
 

SafetyRating is the safety rating corresponding to the generated content.

SafetySetting

  type 
  
 SafetySetting 
  
 struct 
  
 { 
  
 // Required. Harm category. 
  
 Category 
  
  HarmCategory 
 
  
 // Required. The harm block threshold. 
  
 Threshold 
  
  HarmBlockThreshold 
 
 } 
 

SafetySetting is safety settings.

Schema

  type 
  
 Schema 
  
 struct 
  
 { 
  
 // Optional. The type of the data. 
  
 Type 
  
  Type 
 
  
 // Optional. The format of the data. 
  
 // Supported formats: 
  
 //  for NUMBER type: float, double 
  
 //  for INTEGER type: int32, int64 
  
 Format 
  
  string 
 
  
 // Optional. The description of the data. 
  
 Description 
  
  string 
 
  
 // Optional. Indicates if the value may be null. 
  
 Nullable 
  
  bool 
 
  
 // Optional. Schema of the elements of Type.ARRAY. 
  
 Items 
  
 * 
  Schema 
 
  
 // Optional. Possible values of the element of Type.STRING with enum format. 
  
 // For example we can define an Enum Direction as : 
  
 // {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 
  
 Enum 
  
 [] 
  string 
 
  
 // Optional. Properties of Type.OBJECT. 
  
 Properties 
  
 map 
 [ 
  string 
 
 ] 
 * 
  Schema 
 
  
 // Optional. Required properties of Type.OBJECT. 
  
 Required 
  
 [] 
  string 
 
 } 
 

Schema is used to define the format of input/output data. Represents a select subset of an OpenAPI 3.0 schema object . More fields may be added in the future as needed.

Text

  type 
  
 Text 
  
  string 
 
 

A Text is a piece of text, like a question or phrase.

Tool

  type 
  
 Tool 
  
 struct 
  
 { 
  
 // Optional. One or more function declarations to be passed to the model along 
  
 // with the current user query. Model may decide to call a subset of these 
  
 // functions by populating [FunctionCall][content.part.function_call] in the 
  
 // response. User should provide a 
  
 // [FunctionResponse][content.part.function_response] for each function call 
  
 // in the next turn. Based on the function responses, Model will generate the 
  
 // final response back to the user. Maximum 64 function declarations can be 
  
 // provided. 
  
 FunctionDeclarations 
  
 [] 
 * 
  FunctionDeclaration 
 
 } 
 

Tool details that the model may use to generate response.

A Tool is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.

Type

  type 
  
 Type 
  
  int32 
 
 

Type contains the list of OpenAPI data types as defined by https://swagger.io/docs/specification/data-models/data-types/

TypeUnspecified, TypeString, TypeNumber, TypeInteger, TypeBoolean, TypeArray, TypeObject

  const 
  
 ( 
  
 // TypeUnspecified means not specified, should not be used. 
  
 TypeUnspecified 
  
  Type 
 
  
 = 
  
 0 
  
 // TypeString means openAPI string type 
  
 TypeString 
  
  Type 
 
  
 = 
  
 1 
  
 // TypeNumber means openAPI number type 
  
 TypeNumber 
  
  Type 
 
  
 = 
  
 2 
  
 // TypeInteger means openAPI integer type 
  
 TypeInteger 
  
  Type 
 
  
 = 
  
 3 
  
 // TypeBoolean means openAPI boolean type 
  
 TypeBoolean 
  
  Type 
 
  
 = 
  
 4 
  
 // TypeArray means openAPI array type 
  
 TypeArray 
  
  Type 
 
  
 = 
  
 5 
  
 // TypeObject means openAPI object type 
  
 TypeObject 
  
  Type 
 
  
 = 
  
 6 
 ) 
 

func (Type) String

  func 
  
 ( 
 v 
  
  Type 
 
 ) 
  
 String 
 () 
  
  string 
 
 
  type 
  
 UsageMetadata 
  
 struct 
  
 { 
  
 // Number of tokens in the request. 
  
 PromptTokenCount 
  
  int32 
 
  
 // Number of tokens in the response(s). 
  
 CandidatesTokenCount 
  
  int32 
 
  
 TotalTokenCount 
  
  int32 
 
 } 
 

UsageMetadata is usage metadata about response(s).

Create a Mobile Website
View Site in Mobile | Classic
Share by: