Get a batch prediction job

Gets a batch prediction job using the get_batch_prediction_job method.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJob 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJob 
. InputConfig 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJob 
.OutputConfig 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJob 
.OutputInfo 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJobName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BigQueryDestination 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BigQuerySource 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. CompletionStats 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. GcsDestination 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. GcsSource 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ResourcesConsumed 
 
 ; 
 import 
  
 com.google.protobuf. Any 
 
 ; 
 import 
  
 com.google.rpc. Status 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.List 
 ; 
 public 
  
 class 
 GetBatchPredictionJobSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 batchPredictionJobId 
  
 = 
  
 "YOUR_BATCH_PREDICTION_JOB_ID" 
 ; 
  
 getBatchPredictionJobSample 
 ( 
 project 
 , 
  
 batchPredictionJobId 
 ); 
  
 } 
  
 static 
  
 void 
  
 getBatchPredictionJobSample 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 batchPredictionJobId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  JobServiceSettings 
 
  
 jobServiceSettings 
  
 = 
  
  JobServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  JobServiceClient 
 
  
 jobServiceClient 
  
 = 
  
  JobServiceClient 
 
 . 
 create 
 ( 
 jobServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  BatchPredictionJobName 
 
  
 batchPredictionJobName 
  
 = 
  
  BatchPredictionJobName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 batchPredictionJobId 
 ); 
  
  BatchPredictionJob 
 
  
 batchPredictionJob 
  
 = 
  
 jobServiceClient 
 . 
 getBatchPredictionJob 
 ( 
 batchPredictionJobName 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Get Batch Prediction Job Response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tName: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDisplay Name: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getDisplayName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tModel: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getModel 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tModel Parameters: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getModelParameters 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tState: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getState 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tCreate Time: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tStart Time: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getStartTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tEnd Time: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getEndTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tUpdate Time: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getUpdateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabels: %s\n" 
 , 
  
 batchPredictionJob 
 . 
  getLabelsMap 
 
 ()); 
  
  InputConfig 
 
  
 inputConfig 
  
 = 
  
 batchPredictionJob 
 . 
  getInputConfig 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tInput Config" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tInstances Format: %s\n" 
 , 
  
 inputConfig 
 . 
 getInstancesFormat 
 ()); 
  
  GcsSource 
 
  
 gcsSource 
  
 = 
  
 inputConfig 
 . 
 getGcsSource 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tGcs Source" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tUris: %s\n" 
 , 
  
 gcsSource 
 . 
  getUrisList 
 
 ()); 
  
  BigQuerySource 
 
  
 bigquerySource 
  
 = 
  
 inputConfig 
 . 
 getBigquerySource 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tBigquery Source" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tInput Uri: %s\n" 
 , 
  
 bigquerySource 
 . 
  getInputUri 
 
 ()); 
  
 OutputConfig 
  
 outputConfig 
  
 = 
  
 batchPredictionJob 
 . 
  getOutputConfig 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tOutput Config" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tPredictions Format: %s\n" 
 , 
  
 outputConfig 
 . 
 getPredictionsFormat 
 ()); 
  
  GcsDestination 
 
  
 gcsDestination 
  
 = 
  
 outputConfig 
 . 
 getGcsDestination 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tGcs Destination" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tOutput Uri Prefix: %s\n" 
 , 
  
 gcsDestination 
 . 
  getOutputUriPrefix 
 
 ()); 
  
  BigQueryDestination 
 
  
 bigqueryDestination 
  
 = 
  
 outputConfig 
 . 
 getBigqueryDestination 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tBigquery Destination" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tOutput Uri: %s\n" 
 , 
  
 bigqueryDestination 
 . 
  getOutputUri 
 
 ()); 
  
 OutputInfo 
  
 outputInfo 
  
 = 
  
 batchPredictionJob 
 . 
  getOutputInfo 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tOutput Info" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tGcs Output Directory: %s\n" 
 , 
  
 outputInfo 
 . 
 getGcsOutputDirectory 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tBigquery Output Dataset: %s\n" 
 , 
  
 outputInfo 
 . 
 getBigqueryOutputDataset 
 ()); 
  
  Status 
 
  
 status 
  
 = 
  
 batchPredictionJob 
 . 
  getError 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tError" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCode: %s\n" 
 , 
  
 status 
 . 
  getCode 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tMessage: %s\n" 
 , 
  
 status 
 . 
  getMessage 
 
 ()); 
  
 List<Any> 
  
 detailsList 
  
 = 
  
 status 
 . 
  getDetailsList 
 
 (); 
  
 for 
  
 ( 
  Status 
 
  
 partialFailure 
  
 : 
  
 batchPredictionJob 
 . 
  getPartialFailuresList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tPartial Failure" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCode: %s\n" 
 , 
  
 partialFailure 
 . 
 getCode 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tMessage: %s\n" 
 , 
  
 partialFailure 
 . 
 getMessage 
 ()); 
  
 List<Any> 
  
 details 
  
 = 
  
 partialFailure 
 . 
 getDetailsList 
 (); 
  
 } 
  
  ResourcesConsumed 
 
  
 resourcesConsumed 
  
 = 
  
 batchPredictionJob 
 . 
  getResourcesConsumed 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tResources Consumed" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tReplica Hours: %s\n" 
 , 
  
 resourcesConsumed 
 . 
  getReplicaHours 
 
 ()); 
  
  CompletionStats 
 
  
 completionStats 
  
 = 
  
 batchPredictionJob 
 . 
  getCompletionStats 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tCompletion Stats" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tSuccessful Count: %s\n" 
 , 
  
 completionStats 
 . 
  getSuccessfulCount 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tFailed Count: %s\n" 
 , 
  
 completionStats 
 . 
  getFailedCount 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tIncomplete Count: %s\n" 
 , 
  
 completionStats 
 . 
  getIncompleteCount 
 
 ()); 
  
 } 
  
 } 
 } 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 get_batch_prediction_job_sample 
 ( 
 project 
 : 
 str 
 , 
 batch_prediction_job_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  JobServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  batch_prediction_job_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 batch_prediction_job 
 = 
 batch_prediction_job_id 
 ) 
 response 
 = 
 client 
 . 
  get_batch_prediction_job 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: