Dynamically allocate devices to workloads with DRA


This page explains how to deploy dynamic resource allocation (DRA) workloads on your Google Kubernetes Engine clusters. On this page, you'll create a ResourceClaimTemplate to request hardware with DRA and then deploy a basic workload to demonstrate how Kubernetes flexibly allocates hardware on your Pods.

This page is intended for Application operators and Data engineers who run workloads like AI/ML or high performance computing (HPC).

About dynamic resource allocation

DRA is a built-in Kubernetes feature that lets you flexibly request, allocate, and share hardware in your cluster among Pods and containers. For more information, see About dynamic resource allocation .

About requesting devices with DRA

When you set up your GKE infrastructure for DRA, the DRA drivers on your nodes create DeviceClass objects in the cluster. A DeviceClass defines a category of devices, such as GPUs, that are available to request for workloads. A platform administrator can optionally deploy additional DeviceClasses that limit which devices you can request in specific workloads.

To request devices within a DeviceClass , you create one of the following objects:

  • ResourceClaim : A ResourceClaim lets a Pod or a user request hardware resources by filtering for certain parameters within a DeviceClass.
  • ResourceClaimTemplate : A ResourceClaimTemplate defines a template that Pods can use to automatically create new per-Pod ResourceClaims.

For more information about ResourceClaim and ResourceClaimTemplate objects, see When to use ResourceClaims and ResourceClaimTemplates .

The examples on this page use a basic ResourceClaimTemplate to request the specified device configuration. For more detailed information, see the ResourceClaimTemplateSpec Kubernetes documentation .

Limitations

  • Node auto-provisioning isn't supported.
  • Autopilot clusters don't support DRA.
  • You can't use the following GPU sharing features:
    • Time-sharing GPUs
    • Multi-instance GPUs
    • Multi-process Service (MPS)

Requirements

To use DRA, your GKE version must be version 1.32.1-gke.1489001 or later.

You should also be familiar with the following requirements and limitations:

Before you begin

Before you start, make sure that you have performed the following tasks:

  • Enable the Google Kubernetes Engine API.
  • Enable Google Kubernetes Engine API
  • If you want to use the Google Cloud CLI for this task, install and then initialize the gcloud CLI. If you previously installed the gcloud CLI, get the latest version by running gcloud components update .

Use DRA to deploy workloads

To request per-Pod device allocation, you first create a ResourceClaimTemplate that produces a ResourceClaim to describe your request for GPUs or TPUs, which Kubernetes uses as a template to create new ResourceClaim objects for each Pod in a workload. When you specify the ResourceClaimTemplate in a workload, Kubernetes allocates the requested resources and schedules the Pods on corresponding nodes.

GPU

  1. Save the following manifest as claim-template.yaml :

      apiVersion 
     : 
      
     resource.k8s.io/v1beta1 
     kind 
     : 
      
     ResourceClaimTemplate 
     metadata 
     : 
      
     name 
     : 
      
     gpu-claim-template 
     spec 
     : 
      
     spec 
     : 
      
     devices 
     : 
      
     requests 
     : 
      
     - 
      
     name 
     : 
      
     single-gpu 
      
     deviceClassName 
     : 
      
     gpu.nvidia.com 
      
     allocationMode 
     : 
      
     ExactCount 
      
     count 
     : 
      
     1 
     
    
  2. Create the ResourceClaimTemplate :

     kubectl  
    create  
    -f  
    claim-template.yaml 
    
  3. To create a workload that references the ResourceClaimTemplate , save the following manifest as dra-gpu-example.yaml :

      apiVersion 
     : 
      
     apps/v1 
     kind 
     : 
      
     Deployment 
     metadata 
     : 
      
     name 
     : 
      
     dra-gpu-example 
     spec 
     : 
      
     replicas 
     : 
      
     1 
      
     selector 
     : 
      
     matchLabels 
     : 
      
     app 
     : 
      
     dra-gpu-example 
      
     template 
     : 
      
     metadata 
     : 
      
     labels 
     : 
      
     app 
     : 
      
     dra-gpu-example 
      
     spec 
     : 
      
     containers 
     : 
      
     - 
      
     name 
     : 
      
     ctr 
      
     image 
     : 
      
     ubuntu:22.04 
      
     command 
     : 
      
     [ 
     "bash" 
     , 
      
     "-c" 
     ] 
      
     args 
     : 
      
     [ 
     "while 
      
     [ 
      
     1 
      
     ]; 
      
     do 
      
     date; 
      
     echo 
      
     $(nvidia-smi 
      
     -L 
      
     || 
      
     echo 
      
     Waiting...); 
      
     sleep 
      
     60; 
      
     done" 
     ] 
      
     resources 
     : 
      
     claims 
     : 
      
     - 
      
     name 
     : 
      
     single-gpu 
      
     resourceClaims 
     : 
      
     - 
      
     name 
     : 
      
     single-gpu 
      
     resourceClaimTemplateName 
     : 
      
     gpu-claim-template 
      
     tolerations 
     : 
      
     - 
      
     key 
     : 
      
     "nvidia.com/gpu" 
      
     operator 
     : 
      
     "Exists" 
      
     effect 
     : 
      
     "NoSchedule" 
     
    
  4. Deploy the workload:

     kubectl  
    create  
    -f  
    dra-gpu-example.yaml 
    

TPU

  1. Save the following manifest as claim-template.yaml :

      apiVersion 
     : 
      
     resource.k8s.io/v1beta1 
     kind 
     : 
      
     ResourceClaimTemplate 
     metadata 
     : 
      
     name 
     : 
      
     tpu-claim-template 
     spec 
     : 
      
     spec 
     : 
      
     devices 
     : 
      
     requests 
     : 
      
     - 
      
     name 
     : 
      
     all-tpus 
      
     deviceClassName 
     : 
      
     tpu.google.com 
      
     allocationMode 
     : 
      
     All 
     
    

    This ResourceClaimTemplate requests that GKE allocate an entire TPU node pool to every ResourceClaim .

  2. Create the ResourceClaimTemplate :

     kubectl  
    create  
    -f  
    claim-template.yaml 
    
  3. To create a workload that references the ResourceClaimTemplate , save the following manifest as dra-tpu-example.yaml :

      apiVersion 
     : 
      
     apps/v1 
     kind 
     : 
      
     Deployment 
     metadata 
     : 
      
     name 
     : 
      
     dra-tpu-example 
     spec 
     : 
      
     replicas 
     : 
      
     1 
      
     selector 
     : 
      
     matchLabels 
     : 
      
     app 
     : 
      
     dra-tpu-example 
      
     template 
     : 
      
     metadata 
     : 
      
     labels 
     : 
      
     app 
     : 
      
     dra-tpu-example 
      
     spec 
     : 
      
     containers 
     : 
      
     - 
      
     name 
     : 
      
     ctr 
      
     image 
     : 
      
     ubuntu:22.04 
      
     command 
     : 
      
     - 
      
     /bin/sh 
      
     - 
      
     -c 
      
     - 
      
     | 
      
     echo "Environment Variables:" 
      
     env 
      
     echo "Sleeping indefinitely..." 
      
     sleep infinity 
      
     resources 
     : 
      
     claims 
     : 
      
     - 
      
     name 
     : 
      
     all-tpus 
      
     resourceClaims 
     : 
      
     - 
      
     name 
     : 
      
     all-tpus 
      
     resourceClaimTemplateName 
     : 
      
     tpu-claim-template 
      
     tolerations 
     : 
      
     - 
      
     key 
     : 
      
     "google.com/tpu" 
      
     operator 
     : 
      
     "Exists" 
      
     effect 
     : 
      
     "NoSchedule" 
     
    
  4. Deploy the workload:

     kubectl  
    create  
    -f  
    dra-tpu-example.yaml 
    

Verify the hardware allocation

You can verify that your workloads have been allocated hardware by checking the ResourceClaim or by looking at the logs for your Pod.

GPU

  1. Get the ResourceClaim associated with the workload that you deployed:

     kubectl  
    get  
    resourceclaims 
    

    The output should resemble the following:

     NAME  
    STATE  
    AGE
    dra-gpu-example-64b75dc6b-x8bd6-single-gpu-jwwdh  
    allocated,reserved  
    9s 
    
  2. To get more details about the hardware assigned to the Pod, run the following command:

     kubectl  
    describe  
    resourceclaims  
     RESOURCECLAIM 
     
    

    Replace RESOURCECLAIM with the full name of the ResourceClaim that you got from the output of the previous step.

    The output should resemble the following:

     Name:         dra-gpu-example-64b75dc6b-x8bd6-single-gpu-jwwdh
    Namespace:    default
    Labels:       <none>
    Annotations:  resource.kubernetes.io/pod-claim-name: single-gpu
    API Version:  resource.k8s.io/v1beta1
    Kind:         ResourceClaim
    Metadata:
      Creation Timestamp:  2025-03-31T17:11:37Z
      Finalizers:
        resource.kubernetes.io/delete-protection
      Generate Name:  dra-gpu-example-64b75dc6b-x8bd6-single-gpu-
      Owner References:
        API Version:           v1
        Block Owner Deletion:  true
        Controller:            true
        Kind:                  Pod
        Name:                  dra-gpu-example-64b75dc6b-x8bd6
        UID:                   cb3cb1db-e62a-4961-9967-cdc7d599105b
      Resource Version:        12953269
      UID:                     3e0c3925-e15a-40e9-b552-d03610fff040
    Spec:
      Devices:
        Requests:
          Allocation Mode:    ExactCount
          Count:              1
          Device Class Name:  gpu.nvidia.com
          Name:               single-gpu
    Status:
      Allocation:
        Devices:
          Results:
            Admin Access:  <nil>
            Device:        gpu-0
            Driver:        gpu.nvidia.com
            Pool:          gke-cluster-gpu-pool-11026a2e-zgt1
            Request:       single-gpu
        Node Selector:
          # lines omitted for clarity
      Reserved For:
        Name:      dra-gpu-example-64b75dc6b-x8bd6
        Resource:  pods
        UID:       cb3cb1db-e62a-4961-9967-cdc7d599105b
    Events:        <none> 
    
  3. To get logs for the workload that you deployed, run the following command:

     kubectl  
    logs  
    deployment/dra-gpu-example  
    --all-pods = 
     true 
      
     | 
      
    grep  
     "GPU" 
     
    

    The output should resemble the following:

      [ 
    pod/dra-gpu-example-64b75dc6b-x8bd6/ctr ] 
      
    GPU  
     0 
    :  
    Tesla  
    T4  
     ( 
    UUID:  
    GPU-2087ac7a-f781-8cd7-eb6b-b00943cc13ef ) 
     
    

    The output of these steps shows that GKE allocated one GPU to the Pod.

TPU

  1. Get the ResourceClaim associated with the workload that you deployed:

     kubectl  
    get  
    resourceclaims  
     | 
      
    grep  
    dra-tpu-example 
    

    The output should resemble the following:

     NAME  
    STATE  
    AGE
    dra-tpu-example-64b75dc6b-x8bd6-all-tpus-jwwdh  
    allocated,reserved  
    9s 
    
  2. To get more details about the hardware assigned to the Pod, run the following command:

     kubectl  
    describe  
    resourceclaims  
     RESOURCECLAIM 
      
    -o  
    yaml 
    

    Replace RESOURCECLAIM with the full name of the ResourceClaim that you got from the output of the previous step.

    The output should resemble the following:

      apiVersion 
     : 
      
     resource.k8s.io/v1beta1 
     kind 
     : 
      
     ResourceClaim 
     metadata 
     : 
      
     annotations 
     : 
      
     resource.kubernetes.io/pod-claim-name 
     : 
      
     all-tpus 
      
     creationTimestamp 
     : 
      
     "2025-03-04T21:00:54Z" 
      
     finalizers 
     : 
      
     - 
      
     resource.kubernetes.io/delete-protection 
      
     generateName 
     : 
      
     dra-tpu-example-59b8785697-k9kzd-all-gpus- 
      
     name 
     : 
      
     dra-tpu-example-59b8785697-k9kzd-all-gpus-gnr7z 
      
     namespace 
     : 
      
     default 
      
     ownerReferences 
     : 
      
     - 
      
     apiVersion 
     : 
      
     v1 
      
     blockOwnerDeletion 
     : 
      
     true 
      
     controller 
     : 
      
     true 
      
     kind 
     : 
      
     Pod 
      
     name 
     : 
      
     dra-tpu-example-59b8785697-k9kzd 
      
     uid 
     : 
      
     c2f4fe66-9a73-4bd3-a574-4c3eea5fda3f 
      
     resourceVersion 
     : 
      
     "12189603" 
      
     uid 
     : 
      
     279b5014-340b-4ef6-9dda-9fbf183fbb71 
     spec 
     : 
      
     devices 
     : 
      
     requests 
     : 
      
     - 
      
     allocationMode 
     : 
      
     All 
      
     deviceClassName 
     : 
      
     tpu.google.com 
      
     name 
     : 
      
     all-tpus 
     status 
     : 
      
     allocation 
     : 
      
     devices 
     : 
      
     results 
     : 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "0" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "1" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "2" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "3" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "4" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "5" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "6" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     - 
      
     adminAccess 
     : 
      
     null 
      
     device 
     : 
      
     "7" 
      
     driver 
     : 
      
     tpu.google.com 
      
     pool 
     : 
      
     gke-tpu-2ec29193-bcc0 
      
     request 
     : 
      
     all-tpus 
      
     nodeSelector 
     : 
      
     nodeSelectorTerms 
     : 
      
     - 
      
     matchFields 
     : 
      
     - 
      
     key 
     : 
      
     metadata.name 
      
     operator 
     : 
      
     In 
      
     values 
     : 
      
     - 
      
     gke-tpu-2ec29193-bcc0 
      
     reservedFor 
     : 
      
     - 
      
     name 
     : 
      
     dra-tpu-example-59b8785697-k9kzd 
      
     resource 
     : 
      
     pods 
      
     uid 
     : 
      
     c2f4fe66-9a73-4bd3-a574-4c3eea5fda3f 
     
    
  3. To get logs for the workload that you deployed, run the following command:

     kubectl  
    logs  
    deployment/dra-tpu-example  
    --all-pods = 
     true 
      
     | 
      
    grep  
     "TPU" 
     
    

    The output should resemble the following:

      [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_CHIPS_PER_HOST_BOUNDS 
     = 
     2 
    ,4,1 [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_TOPOLOGY_WRAP 
     = 
    false,false,false [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_SKIP_MDS_QUERY 
     = 
     true 
     [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_RUNTIME_METRICS_PORTS 
     = 
     8431 
    ,8432,8433,8434,8435,8436,8437,8438 [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_WORKER_ID 
     = 
     0 
     [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_WORKER_HOSTNAMES 
     = 
    localhost [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_TOPOLOGY 
     = 
    2x4 [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_ACCELERATOR_TYPE 
     = 
    v6e-8 [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_HOST_BOUNDS 
     = 
     1 
    ,1,1 [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_TOPOLOGY_ALT 
     = 
     false 
     [ 
    pod/dra-tpu-example-59b8785697-tm2lc/ctr ] 
      
     TPU_DEVICE_0_RESOURCE_CLAIM 
     = 
    77e68f15-fa2f-4109-9a14-6c91da1a38d3 
    

    The output of these steps indicates that all of the TPUs in a node pool were allocated to the Pod.

What's next

Create a Mobile Website
View Site in Mobile | Classic
Share by: