Class v1beta1.PredictionServiceClient (2.5.2)

AutoML Prediction API.

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted. v1beta1

Package

@google-cloud/automl

Constructors

(constructor)(opts)

  constructor 
 ( 
 opts 
 ?: 
  
 ClientOptions 
 ); 
 

Construct an instance of PredictionServiceClient.

Parameter
Name Description
opts ClientOptions

Properties

apiEndpoint

  static 
  
 get 
  
 apiEndpoint 
 () 
 : 
  
 string 
 ; 
 

The DNS address for this API service - same as servicePath(), exists for compatibility reasons.

auth

  auth 
 : 
  
 gax 
 . 
 GoogleAuth 
 ; 
 

descriptors

  descriptors 
 : 
  
 Descriptors 
 ; 
 

innerApiCalls

  innerApiCalls 
 : 
  
 { 
  
 [ 
 name 
 : 
  
 string 
 ] 
 : 
  
 Function 
 ; 
  
 }; 
 

operationsClient

  operationsClient 
 : 
  
 gax 
 . 
 OperationsClient 
 ; 
 

pathTemplates

  pathTemplates 
 : 
  
 { 
  
 [ 
 name 
 : 
  
 string 
 ] 
 : 
  
 gax 
 . 
 PathTemplate 
 ; 
  
 }; 
 

port

  static 
  
 get 
  
 port 
 () 
 : 
  
 number 
 ; 
 

The port for this API service.

predictionServiceStub

  predictionServiceStub 
 ?: 
  
 Promise 
< { 
  
 [ 
 name 
 : 
  
 string 
 ] 
 : 
  
 Function 
 ; 
  
 }>; 
 

scopes

  static 
  
 get 
  
 scopes 
 () 
 : 
  
 string 
 []; 
 

The scopes needed to make gRPC calls for every method defined in this service.

servicePath

  static 
  
 get 
  
 servicePath 
 () 
 : 
  
 string 
 ; 
 

The DNS address for this API service.

warn

  warn 
 : 
  
 ( 
 code 
 : 
  
 string 
 , 
  
 message 
 : 
  
 string 
 , 
  
 warnType 
 ?: 
  
 string 
 ) 
  
 = 
>  
 void 
 ; 
 

Methods

annotationSpecPath(project, location, dataset, annotationSpec)

  annotationSpecPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 dataset 
 : 
  
 string 
 , 
  
 annotationSpec 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified annotationSpec resource name string.

Parameters
Name Description
project string
location string
dataset string
annotationSpec string
Returns
Type Description
string

{string} Resource name string.

batchPredict(request, options)

  batchPredict 
 ( 
 request 
 ?: 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictRequest 
 , 
  
 options 
 ?: 
  
 CallOptions 
 ) 
 : 
  
 Promise 
< [ 
 LROperation<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictResult 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IOperationMetadata 
> , 
  
 protos 
 . 
 google 
 . 
 longrunning 
 . 
 IOperation 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 undefined 
 ]>; 
 

Perform a batch prediction. Unlike the online , batch prediction result won't be immediately available in the response. Instead, a long running operation object is returned. User can poll the operation result via method. Once the operation is done, is returned in the field. Available for following ML problems: * Image Classification * Image Object Detection * Video Classification * Video Object Tracking * Text Extraction * Tables

Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IBatchPredictRequest

The request object that will be sent.

options CallOptions

Call options. See CallOptions for more details.

Returns
Type Description
Promise <[ LROperation <protos. google.cloud.automl.v1beta1.IBatchPredictResult , protos. google.cloud.automl.v1beta1.IOperationMetadata >, protos. google.longrunning.IOperation | undefined, {} | undefined]>

{Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its promise() method returns a promise you can await for. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples.

Example
   
 /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
  
 /** 
 *  Required. Name of the model requested to serve the batch prediction. 
 */ 
  
 // const name = 'abc123' 
  
 /** 
 *  Required. The input configuration for batch prediction. 
 */ 
  
 // const inputConfig = {} 
  
 /** 
 *  Required. The Configuration specifying where output predictions should 
 *  be written. 
 */ 
  
 // const outputConfig = {} 
  
 /** 
 *  Required. Additional domain-specific parameters for the predictions, any string must 
 *  be up to 25000 characters long. 
 *  *  For Text Classification: 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *          makes predictions for a text snippet, it will only produce results 
 *          that have at least this confidence score. The default is 0.5. 
 *  *  For Image Classification: 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *          makes predictions for an image, it will only produce results that 
 *          have at least this confidence score. The default is 0.5. 
 *  *  For Image Object Detection: 
 *     `score_threshold` - (float) When Model detects objects on the image, 
 *         it will only produce bounding boxes which have at least this 
 *         confidence score. Value in 0 to 1 range, default is 0.5. 
 *     `max_bounding_box_count` - (int64) No more than this number of bounding 
 *         boxes will be produced per image. Default is 100, the 
 *         requested value may be limited by server. 
 *  *  For Video Classification : 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *         makes predictions for a video, it will only produce results that 
 *         have at least this confidence score. The default is 0.5. 
 *     `segment_classification` - (boolean) Set to true to request 
 *         segment-level classification. AutoML Video Intelligence returns 
 *         labels and their confidence scores for the entire segment of the 
 *         video that user specified in the request configuration. 
 *         The default is "true". 
 *     `shot_classification` - (boolean) Set to true to request shot-level 
 *         classification. AutoML Video Intelligence determines the boundaries 
 *         for each camera shot in the entire segment of the video that user 
 *         specified in the request configuration. AutoML Video Intelligence 
 *         then returns labels and their confidence scores for each detected 
 *         shot, along with the start and end time of the shot. 
 *         WARNING: Model evaluation is not done for this classification type, 
 *         the quality of it depends on training data, but there are no metrics 
 *         provided to describe that quality. The default is "false". 
 *     `1s_interval_classification` - (boolean) Set to true to request 
 *         classification for a video at one-second intervals. AutoML Video 
 *         Intelligence returns labels and their confidence scores for each 
 *         second of the entire segment of the video that user specified in the 
 *         request configuration. 
 *         WARNING: Model evaluation is not done for this classification 
 *         type, the quality of it depends on training data, but there are no 
 *         metrics provided to describe that quality. The default is 
 *         "false". 
 *  *  For Tables: 
 *     feature_imp ortan 
ce - (boolean) Whether feature importance 
 *         should be populated in the returned TablesAnnotations. The 
 *         default is false. 
 *  *  For Video Object Tracking: 
 *     `score_threshold` - (float) When Model detects objects on video frames, 
 *         it will only produce bounding boxes which have at least this 
 *         confidence score. Value in 0 to 1 range, default is 0.5. 
 *     `max_bounding_box_count` - (int64) No more than this number of bounding 
 *         boxes will be returned per frame. Default is 100, the requested 
 *         value may be limited by server. 
 *     `min_bounding_box_size` - (float) Only bounding boxes with shortest edge 
 *       at least that long as a relative value of video frame size will be 
 *       returned. Value in 0 to 1 range. Default is 0. 
 */ 
  
 // const params = 1234 
  
 // Imports the Automl library 
  
 const 
  
 { 
 PredictionServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/automl 
' 
 ). 
 v1beta1 
 ; 
  
 // Instantiates a client 
  
 const 
  
 automlClient 
  
 = 
  
 new 
  
  PredictionServiceClient 
 
 (); 
  
 async 
  
 function 
  
 callBatchPredict 
 () 
  
 { 
  
 // Construct request 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 inputConfig 
 , 
  
 outputConfig 
 , 
  
 params 
 , 
  
 }; 
  
 // Run request 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 automlClient 
 . 
 batchPredict 
 ( 
 request 
 ); 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 operation 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 response 
 ); 
  
 } 
  
 callBatchPredict 
 (); 
 

batchPredict(request, options, callback)

  batchPredict 
 ( 
 request 
 : 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictRequest 
 , 
  
 options 
 : 
  
 CallOptions 
 , 
  
 callback 
 : 
  
 Callback<LROperation<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictResult 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IOperationMetadata 
> , 
  
 protos 
 . 
 google 
 . 
 longrunning 
 . 
 IOperation 
  
 | 
  
 null 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 null 
  
 | 
  
 undefined 
> ) 
 : 
  
 void 
 ; 
 
Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IBatchPredictRequest
options CallOptions
callback Callback < LROperation <protos. google.cloud.automl.v1beta1.IBatchPredictResult , protos. google.cloud.automl.v1beta1.IOperationMetadata >, protos. google.longrunning.IOperation | null | undefined, {} | null | undefined>
Returns
Type Description
void

batchPredict(request, callback)

  batchPredict 
 ( 
 request 
 : 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictRequest 
 , 
  
 callback 
 : 
  
 Callback<LROperation<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IBatchPredictResult 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IOperationMetadata 
> , 
  
 protos 
 . 
 google 
 . 
 longrunning 
 . 
 IOperation 
  
 | 
  
 null 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 null 
  
 | 
  
 undefined 
> ) 
 : 
  
 void 
 ; 
 
Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IBatchPredictRequest
callback Callback < LROperation <protos. google.cloud.automl.v1beta1.IBatchPredictResult , protos. google.cloud.automl.v1beta1.IOperationMetadata >, protos. google.longrunning.IOperation | null | undefined, {} | null | undefined>
Returns
Type Description
void

checkBatchPredictProgress(name)

  checkBatchPredictProgress 
 ( 
 name 
 : 
  
 string 
 ) 
 : 
  
 Promise<LROperation<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 BatchPredictResult 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 OperationMetadata 
>> ; 
 

Check the status of the long running operation returned by batchPredict() .

Parameter
Name Description
name string

The operation name that will be passed.

Returns
Type Description
Promise < LROperation <protos. google.cloud.automl.v1beta1.BatchPredictResult , protos. google.cloud.automl.v1beta1.OperationMetadata >>

{Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples.

Example
   
 /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
  
 /** 
 *  Required. Name of the model requested to serve the batch prediction. 
 */ 
  
 // const name = 'abc123' 
  
 /** 
 *  Required. The input configuration for batch prediction. 
 */ 
  
 // const inputConfig = {} 
  
 /** 
 *  Required. The Configuration specifying where output predictions should 
 *  be written. 
 */ 
  
 // const outputConfig = {} 
  
 /** 
 *  Required. Additional domain-specific parameters for the predictions, any string must 
 *  be up to 25000 characters long. 
 *  *  For Text Classification: 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *          makes predictions for a text snippet, it will only produce results 
 *          that have at least this confidence score. The default is 0.5. 
 *  *  For Image Classification: 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *          makes predictions for an image, it will only produce results that 
 *          have at least this confidence score. The default is 0.5. 
 *  *  For Image Object Detection: 
 *     `score_threshold` - (float) When Model detects objects on the image, 
 *         it will only produce bounding boxes which have at least this 
 *         confidence score. Value in 0 to 1 range, default is 0.5. 
 *     `max_bounding_box_count` - (int64) No more than this number of bounding 
 *         boxes will be produced per image. Default is 100, the 
 *         requested value may be limited by server. 
 *  *  For Video Classification : 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *         makes predictions for a video, it will only produce results that 
 *         have at least this confidence score. The default is 0.5. 
 *     `segment_classification` - (boolean) Set to true to request 
 *         segment-level classification. AutoML Video Intelligence returns 
 *         labels and their confidence scores for the entire segment of the 
 *         video that user specified in the request configuration. 
 *         The default is "true". 
 *     `shot_classification` - (boolean) Set to true to request shot-level 
 *         classification. AutoML Video Intelligence determines the boundaries 
 *         for each camera shot in the entire segment of the video that user 
 *         specified in the request configuration. AutoML Video Intelligence 
 *         then returns labels and their confidence scores for each detected 
 *         shot, along with the start and end time of the shot. 
 *         WARNING: Model evaluation is not done for this classification type, 
 *         the quality of it depends on training data, but there are no metrics 
 *         provided to describe that quality. The default is "false". 
 *     `1s_interval_classification` - (boolean) Set to true to request 
 *         classification for a video at one-second intervals. AutoML Video 
 *         Intelligence returns labels and their confidence scores for each 
 *         second of the entire segment of the video that user specified in the 
 *         request configuration. 
 *         WARNING: Model evaluation is not done for this classification 
 *         type, the quality of it depends on training data, but there are no 
 *         metrics provided to describe that quality. The default is 
 *         "false". 
 *  *  For Tables: 
 *     feature_imp ortan 
ce - (boolean) Whether feature importance 
 *         should be populated in the returned TablesAnnotations. The 
 *         default is false. 
 *  *  For Video Object Tracking: 
 *     `score_threshold` - (float) When Model detects objects on video frames, 
 *         it will only produce bounding boxes which have at least this 
 *         confidence score. Value in 0 to 1 range, default is 0.5. 
 *     `max_bounding_box_count` - (int64) No more than this number of bounding 
 *         boxes will be returned per frame. Default is 100, the requested 
 *         value may be limited by server. 
 *     `min_bounding_box_size` - (float) Only bounding boxes with shortest edge 
 *       at least that long as a relative value of video frame size will be 
 *       returned. Value in 0 to 1 range. Default is 0. 
 */ 
  
 // const params = 1234 
  
 // Imports the Automl library 
  
 const 
  
 { 
 PredictionServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/automl 
' 
 ). 
 v1beta1 
 ; 
  
 // Instantiates a client 
  
 const 
  
 automlClient 
  
 = 
  
 new 
  
  PredictionServiceClient 
 
 (); 
  
 async 
  
 function 
  
 callBatchPredict 
 () 
  
 { 
  
 // Construct request 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 inputConfig 
 , 
  
 outputConfig 
 , 
  
 params 
 , 
  
 }; 
  
 // Run request 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 automlClient 
 . 
 batchPredict 
 ( 
 request 
 ); 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 operation 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 response 
 ); 
  
 } 
  
 callBatchPredict 
 (); 
 

close()

  close 
 () 
 : 
  
 Promise<void> 
 ; 
 

Terminate the gRPC channel and close the client.

The client will no longer be usable and all future behavior is undefined.

Returns
Type Description
Promise <void>

{Promise} A promise that resolves when the client is closed.

columnSpecPath(project, location, dataset, tableSpec, columnSpec)

  columnSpecPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 dataset 
 : 
  
 string 
 , 
  
 tableSpec 
 : 
  
 string 
 , 
  
 columnSpec 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified columnSpec resource name string.

Parameters
Name Description
project string
location string
dataset string
tableSpec string
columnSpec string
Returns
Type Description
string

{string} Resource name string.

datasetPath(project, location, dataset)

  datasetPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 dataset 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified dataset resource name string.

Parameters
Name Description
project string
location string
dataset string
Returns
Type Description
string

{string} Resource name string.

getProjectId()

  getProjectId 
 () 
 : 
  
 Promise<string> 
 ; 
 
Returns
Type Description
Promise <string>

getProjectId(callback)

  getProjectId 
 ( 
 callback 
 : 
  
 Callback<string 
 , 
  
 undefined 
 , 
  
 undefined 
> ) 
 : 
  
 void 
 ; 
 
Parameter
Name Description
callback Callback <string, undefined, undefined>
Returns
Type Description
void

initialize()

  initialize 
 () 
 : 
  
 Promise 
< { 
  
 [ 
 name 
 : 
  
 string 
 ] 
 : 
  
 Function 
 ; 
  
 }>; 
 

Initialize the client. Performs asynchronous operations (such as authentication) and prepares the client. This function will be called automatically when any class method is called for the first time, but if you need to initialize it before calling an actual method, feel free to call initialize() directly.

You can await on this method if you want to make sure the client is initialized.

Returns
Type Description
Promise <{ [name: string]: Function ; }>

{Promise} A promise that resolves to an authenticated service stub.

matchAnnotationSpecFromAnnotationSpecName(annotationSpecName)

  matchAnnotationSpecFromAnnotationSpecName 
 ( 
 annotationSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the annotation_spec from AnnotationSpec resource.

Parameter
Name Description
annotationSpecName string

A fully-qualified path representing AnnotationSpec resource.

Returns
Type Description
string | number

{string} A string representing the annotation_spec.

matchColumnSpecFromColumnSpecName(columnSpecName)

  matchColumnSpecFromColumnSpecName 
 ( 
 columnSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the column_spec from ColumnSpec resource.

Parameter
Name Description
columnSpecName string

A fully-qualified path representing ColumnSpec resource.

Returns
Type Description
string | number

{string} A string representing the column_spec.

matchDatasetFromAnnotationSpecName(annotationSpecName)

  matchDatasetFromAnnotationSpecName 
 ( 
 annotationSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the dataset from AnnotationSpec resource.

Parameter
Name Description
annotationSpecName string

A fully-qualified path representing AnnotationSpec resource.

Returns
Type Description
string | number

{string} A string representing the dataset.

matchDatasetFromColumnSpecName(columnSpecName)

  matchDatasetFromColumnSpecName 
 ( 
 columnSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the dataset from ColumnSpec resource.

Parameter
Name Description
columnSpecName string

A fully-qualified path representing ColumnSpec resource.

Returns
Type Description
string | number

{string} A string representing the dataset.

matchDatasetFromDatasetName(datasetName)

  matchDatasetFromDatasetName 
 ( 
 datasetName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the dataset from Dataset resource.

Parameter
Name Description
datasetName string

A fully-qualified path representing Dataset resource.

Returns
Type Description
string | number

{string} A string representing the dataset.

matchDatasetFromTableSpecName(tableSpecName)

  matchDatasetFromTableSpecName 
 ( 
 tableSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the dataset from TableSpec resource.

Parameter
Name Description
tableSpecName string

A fully-qualified path representing TableSpec resource.

Returns
Type Description
string | number

{string} A string representing the dataset.

matchLocationFromAnnotationSpecName(annotationSpecName)

  matchLocationFromAnnotationSpecName 
 ( 
 annotationSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from AnnotationSpec resource.

Parameter
Name Description
annotationSpecName string

A fully-qualified path representing AnnotationSpec resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchLocationFromColumnSpecName(columnSpecName)

  matchLocationFromColumnSpecName 
 ( 
 columnSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from ColumnSpec resource.

Parameter
Name Description
columnSpecName string

A fully-qualified path representing ColumnSpec resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchLocationFromDatasetName(datasetName)

  matchLocationFromDatasetName 
 ( 
 datasetName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from Dataset resource.

Parameter
Name Description
datasetName string

A fully-qualified path representing Dataset resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchLocationFromModelEvaluationName(modelEvaluationName)

  matchLocationFromModelEvaluationName 
 ( 
 modelEvaluationName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from ModelEvaluation resource.

Parameter
Name Description
modelEvaluationName string

A fully-qualified path representing ModelEvaluation resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchLocationFromModelName(modelName)

  matchLocationFromModelName 
 ( 
 modelName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from Model resource.

Parameter
Name Description
modelName string

A fully-qualified path representing Model resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchLocationFromTableSpecName(tableSpecName)

  matchLocationFromTableSpecName 
 ( 
 tableSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the location from TableSpec resource.

Parameter
Name Description
tableSpecName string

A fully-qualified path representing TableSpec resource.

Returns
Type Description
string | number

{string} A string representing the location.

matchModelEvaluationFromModelEvaluationName(modelEvaluationName)

  matchModelEvaluationFromModelEvaluationName 
 ( 
 modelEvaluationName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the model_evaluation from ModelEvaluation resource.

Parameter
Name Description
modelEvaluationName string

A fully-qualified path representing ModelEvaluation resource.

Returns
Type Description
string | number

{string} A string representing the model_evaluation.

matchModelFromModelEvaluationName(modelEvaluationName)

  matchModelFromModelEvaluationName 
 ( 
 modelEvaluationName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the model from ModelEvaluation resource.

Parameter
Name Description
modelEvaluationName string

A fully-qualified path representing ModelEvaluation resource.

Returns
Type Description
string | number

{string} A string representing the model.

matchModelFromModelName(modelName)

  matchModelFromModelName 
 ( 
 modelName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the model from Model resource.

Parameter
Name Description
modelName string

A fully-qualified path representing Model resource.

Returns
Type Description
string | number

{string} A string representing the model.

matchProjectFromAnnotationSpecName(annotationSpecName)

  matchProjectFromAnnotationSpecName 
 ( 
 annotationSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from AnnotationSpec resource.

Parameter
Name Description
annotationSpecName string

A fully-qualified path representing AnnotationSpec resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchProjectFromColumnSpecName(columnSpecName)

  matchProjectFromColumnSpecName 
 ( 
 columnSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from ColumnSpec resource.

Parameter
Name Description
columnSpecName string

A fully-qualified path representing ColumnSpec resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchProjectFromDatasetName(datasetName)

  matchProjectFromDatasetName 
 ( 
 datasetName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from Dataset resource.

Parameter
Name Description
datasetName string

A fully-qualified path representing Dataset resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchProjectFromModelEvaluationName(modelEvaluationName)

  matchProjectFromModelEvaluationName 
 ( 
 modelEvaluationName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from ModelEvaluation resource.

Parameter
Name Description
modelEvaluationName string

A fully-qualified path representing ModelEvaluation resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchProjectFromModelName(modelName)

  matchProjectFromModelName 
 ( 
 modelName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from Model resource.

Parameter
Name Description
modelName string

A fully-qualified path representing Model resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchProjectFromTableSpecName(tableSpecName)

  matchProjectFromTableSpecName 
 ( 
 tableSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the project from TableSpec resource.

Parameter
Name Description
tableSpecName string

A fully-qualified path representing TableSpec resource.

Returns
Type Description
string | number

{string} A string representing the project.

matchTableSpecFromColumnSpecName(columnSpecName)

  matchTableSpecFromColumnSpecName 
 ( 
 columnSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the table_spec from ColumnSpec resource.

Parameter
Name Description
columnSpecName string

A fully-qualified path representing ColumnSpec resource.

Returns
Type Description
string | number

{string} A string representing the table_spec.

matchTableSpecFromTableSpecName(tableSpecName)

  matchTableSpecFromTableSpecName 
 ( 
 tableSpecName 
 : 
  
 string 
 ) 
 : 
  
 string 
  
 | 
  
 number 
 ; 
 

Parse the table_spec from TableSpec resource.

Parameter
Name Description
tableSpecName string

A fully-qualified path representing TableSpec resource.

Returns
Type Description
string | number

{string} A string representing the table_spec.

modelEvaluationPath(project, location, model, modelEvaluation)

  modelEvaluationPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 model 
 : 
  
 string 
 , 
  
 modelEvaluation 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified modelEvaluation resource name string.

Parameters
Name Description
project string
location string
model string
modelEvaluation string
Returns
Type Description
string

{string} Resource name string.

modelPath(project, location, model)

  modelPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 model 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified model resource name string.

Parameters
Name Description
project string
location string
model string
Returns
Type Description
string

{string} Resource name string.

predict(request, options)

  predict 
 ( 
 request 
 ?: 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
 , 
  
 options 
 ?: 
  
 CallOptions 
 ) 
 : 
  
 Promise 
< [ 
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictResponse 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 undefined 
 ]>; 
 

Perform an online prediction. The prediction result will be directly returned in the response. Available for following ML problems, and their expected request payloads: * Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB. * Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes up to 30MB. * Text Classification - TextSnippet, content up to 60,000 characters, UTF-8 encoded. * Text Extraction - TextSnippet, content up to 30,000 characters, UTF-8 NFC encoded. * Translation - TextSnippet, content up to 25,000 characters, UTF-8 encoded. * Tables - Row, with column values matching the columns of the model, up to 5MB. Not available for FORECASTING

. * Text Sentiment - TextSnippet, content up 500 characters, UTF-8 encoded.

Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IPredictRequest

The request object that will be sent.

options CallOptions

Call options. See CallOptions for more details.

Returns
Type Description
Promise <[protos. google.cloud.automl.v1beta1.IPredictResponse , protos. google.cloud.automl.v1beta1.IPredictRequest | undefined, {} | undefined]>

{Promise} - The promise which resolves to an array. The first element of the array is an object representing [PredictResponse]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples.

Example
   
 /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
  
 /** 
 *  Required. Name of the model requested to serve the prediction. 
 */ 
  
 // const name = 'abc123' 
  
 /** 
 *  Required. Payload to perform a prediction on. The payload must match the 
 *  problem type that the model was trained to solve. 
 */ 
  
 // const payload = {} 
  
 /** 
 *  Additional domain-specific parameters, any string must be up to 25000 
 *  characters long. 
 *  *  For Image Classification: 
 *     `score_threshold` - (float) A value from 0.0 to 1.0. When the model 
 *      makes predictions for an image, it will only produce results that have 
 *      at least this confidence score. The default is 0.5. 
 *   *  For Image Object Detection: 
 *     `score_threshold` - (float) When Model detects objects on the image, 
 *         it will only produce bounding boxes which have at least this 
 *         confidence score. Value in 0 to 1 range, default is 0.5. 
 *     `max_bounding_box_count` - (int64) No more than this number of bounding 
 *         boxes will be returned in the response. Default is 100, the 
 *         requested value may be limited by server. 
 *  *  For Tables: 
 *     feature_imp ortan 
ce - (boolean) Whether feature importance 
 *         should be populated in the returned TablesAnnotation. 
 *         The default is false. 
 */ 
  
 // const params = 1234 
  
 // Imports the Automl library 
  
 const 
  
 { 
 PredictionServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/automl 
' 
 ). 
 v1beta1 
 ; 
  
 // Instantiates a client 
  
 const 
  
 automlClient 
  
 = 
  
 new 
  
  PredictionServiceClient 
 
 (); 
  
 async 
  
 function 
  
 callPredict 
 () 
  
 { 
  
 // Construct request 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 payload 
 , 
  
 }; 
  
 // Run request 
  
 const 
  
 response 
  
 = 
  
 await 
  
 automlClient 
 . 
 predict 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 response 
 ); 
  
 } 
  
 callPredict 
 (); 
 

predict(request, options, callback)

  predict 
 ( 
 request 
 : 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
 , 
  
 options 
 : 
  
 CallOptions 
 , 
  
 callback 
 : 
  
 Callback<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictResponse 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
  
 | 
  
 null 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 null 
  
 | 
  
 undefined 
> ) 
 : 
  
 void 
 ; 
 
Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IPredictRequest
options CallOptions
callback Callback <protos. google.cloud.automl.v1beta1.IPredictResponse , protos. google.cloud.automl.v1beta1.IPredictRequest | null | undefined, {} | null | undefined>
Returns
Type Description
void

predict(request, callback)

  predict 
 ( 
 request 
 : 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
 , 
  
 callback 
 : 
  
 Callback<protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictResponse 
 , 
  
 protos 
 . 
 google 
 . 
 cloud 
 . 
 automl 
 . 
 v1beta1 
 . 
 IPredictRequest 
  
 | 
  
 null 
  
 | 
  
 undefined 
 , 
  
 {} 
  
 | 
  
 null 
  
 | 
  
 undefined 
> ) 
 : 
  
 void 
 ; 
 
Parameters
Name Description
request protos. google.cloud.automl.v1beta1.IPredictRequest
callback Callback <protos. google.cloud.automl.v1beta1.IPredictResponse , protos. google.cloud.automl.v1beta1.IPredictRequest | null | undefined, {} | null | undefined>
Returns
Type Description
void

tableSpecPath(project, location, dataset, tableSpec)

  tableSpecPath 
 ( 
 project 
 : 
  
 string 
 , 
  
 location 
 : 
  
 string 
 , 
  
 dataset 
 : 
  
 string 
 , 
  
 tableSpec 
 : 
  
 string 
 ) 
 : 
  
 string 
 ; 
 

Return a fully-qualified tableSpec resource name string.

Parameters
Name Description
project string
location string
dataset string
tableSpec string
Returns
Type Description
string

{string} Resource name string.

Create a Mobile Website
View Site in Mobile | Classic
Share by: