- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
PCA
(
n_components
:
int
=
3
)
Principal component analysis (PCA).
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract.
It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.
Parameter
n_components
Optional[int], default 3
Number of components to keep. if n_components is not set all components are kept.
Properties
components_
Principal axes in feature space, representing the directions of maximum variance in the data.
explained_variance_
The amount of variance explained by each of the selected components.
explained_variance_ratio_
Percentage of variance explained by each of the selected components.
Methods
__repr__
__repr__
()
Print the estimator's constructor with all non-default parameter values
detect_anomalies
detect_anomalies
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
],
*
,
contamination
:
float
=
0.1
)
-
> bigframes
.
dataframe
.
DataFrame
Detect the anomaly data points of the input.
X
contamination
float, default 0.1
Identifies the proportion of anomalies in the training dataset that are used to create the model. The value must be in the range [0, 0.5].
fit
fit
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
],
y
:
typing
.
Optional
[
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
]
=
None
,
)
-
> bigframes
.
ml
.
base
.
_T
Fit the model according to the given training data.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
Series or DataFrame of shape (n_samples, n_features). Training vector, where n_samples
is the number of samples and n_features
is the number of features.
y
default None
Ignored.
PCA
get_params
get_params
(
deep
:
bool
=
True
)
-
> typing
.
Dict
[
str
,
typing
.
Any
]
Get parameters for this estimator.
deep
bool, default True
Default True
. If True, will return the parameters for this estimator and contained subobjects that are estimators.
Dictionary
predict
predict
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
)
-
> bigframes
.
dataframe
.
DataFrame
Predict the closest cluster for each sample in X.
X
register
register
(
vertex_ai_model_id
:
typing
.
Optional
[
str
]
=
None
)
-
> bigframes
.
ml
.
base
.
_T
Register the model to Vertex AI.
After register, go to Google Cloud Console ( https://console.cloud.google.com/vertex-ai/models ) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
vertex_ai_model_id
Optional[str], default None
optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.
score
score
(
X
=
None
,
y
=
None
)
-
> bigframes
.
dataframe
.
DataFrame
Calculate evaluation metrics of the model.
X
default None
Ignored.
y
default None
Ignored.
to_gbq
to_gbq
(
model_name
:
str
,
replace
:
bool
=
False
)
-
> bigframes
.
ml
.
decomposition
.
PCA
Save the model to BigQuery.
model_name
str
the name of the model.
replace
bool, default False
whether to replace if the model already exists. Default to False.
PCA