- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
SimpleImputer
(
strategy
:
typing
.
Literal
[
"mean"
,
"median"
,
"most_frequent"
]
=
"mean"
)
Univariate imputer for completing missing values with simple strategies.
Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column.
Examples:
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.impute import SimpleImputer
>>> bpd.options.display.progress_bar = None
>>> X_train = bpd.DataFrame({"feat0": [7.0, 4.0, 10.0], "feat1": [2.0, None, 5.0], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean = SimpleImputer().fit(X_train)
>>> X_test = bpd.DataFrame({"feat0": [None, 4.0, 10.0], "feat1": [2.0, None, None], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean.transform(X_test)
imputer_feat0 imputer_feat1 imputer_feat2
0 7.0 2.0 3.0
1 4.0 3.5 6.0
2 10.0 3.5 9.0
<BLANKLINE>
[3 rows x 3 columns]
Parameter
strategy
{'mean', 'median', 'most_frequent'}, default='mean'
The imputation strategy. 'mean': replace missing values using the mean along the axis. 'median':replace missing values using the median along the axis. 'most_frequent', replace missing using the most frequent value along the axis.
Methods
__repr__
__repr__
()
Print the estimator's constructor with all non-default parameter values.
fit
fit
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
y
=
None
,
)
-
> bigframes
.
ml
.
impute
.
SimpleImputer
Fit the imputer on X.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
or pandas.core.frame.DataFrame or pandas.core.series.Series
The Dataframe or Series with training data.
y
default None
Ignored.
SimpleImputer
fit_transform
fit_transform
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
y
:
typing
.
Optional
[
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
]
]
=
None
,
)
-
> bigframes
.
dataframe
.
DataFrame
Fit to data, then transform it.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
Series or DataFrame of shape (n_samples, n_features). Input samples.
y
bigframes.dataframe.DataFrame
or bigframes.series.Series
Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations).
get_params
get_params
(
deep
:
bool
=
True
)
-
> typing
.
Dict
[
str
,
typing
.
Any
]
Get parameters for this estimator.
deep
bool, default True
Default True
. If True, will return the parameters for this estimator and contained subobjects that are estimators.
Dictionary
to_gbq
to_gbq
(
model_name
:
str
,
replace
:
bool
=
False
)
-
> bigframes
.
ml
.
base
.
_T
Save the transformer as a BigQuery model.
model_name
str
The name of the model.
replace
bool, default False
Determine whether to replace if the model already exists. Default to False.
transform
transform
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
)
-
> bigframes
.
dataframe
.
DataFrame
Impute all missing values in X.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
or pandas.core.frame.DataFrame or pandas.core.series.Series
The DataFrame or Series to be transformed.