Package Methods (0.8.0)

Summary of entries of Methods for langchain-google-bigtable.

langchain_google_bigtable.chat_message_history.init_chat_history_table

  init_chat_history_table 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 ) 
 - 
> None 
 

Create a table to store chat history.

See more: langchain_google_bigtable.chat_message_history.init_chat_history_table

langchain_google_bigtable.key_value_store.init_key_value_store_table

  init_key_value_store_table 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 column_families 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [ 
 "kv" 
 ], 
 ) 
 - 
> None 
 

Create a table for saving of LangChain Key-value pairs.

See more: langchain_google_bigtable.key_value_store.init_key_value_store_table

langchain_google_bigtable.loader.init_document_table

  init_document_table 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 content_column_family 
 : 
 str 
 = 
 "langchain" 
 , 
 metadata_mappings 
 : 
 typing 
 . 
 List 
 [ 
 langchain_google_bigtable 
 . 
 loader 
 . 
 MetadataMapping 
 ] 
 = 
 [], 
 metadata_as_json_column_family 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ) 
 - 
> None 
 

Create a table for saving of langchain documents.

See more: langchain_google_bigtable.loader.init_document_table

langchain_google_bigtable.vector_store.init_vector_store_table

  init_vector_store_table 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 content_column_family 
 : 
 str 
 = 
 "langchain" 
 , 
 embedding_column_family 
 : 
 str 
 = 
 "langchain" 
 , 
 ) 
 - 
> None 
 

Creates a Bigtable table with the necessary column families for the vector store.

See more: langchain_google_bigtable.vector_store.init_vector_store_table

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message

  add_message 
 ( 
 message 
 : 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ) 
 - 
> None 
 

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages

  add_messages 
 ( 
 messages 
 : 
 typing 
 . 
 Sequence 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ], 
 ) 
 - 
> None 
 

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear

  clear 
 () 
 - 
> None 
 

langchain_google_bigtable.engine.BigtableEngine

  BigtableEngine 
 ( 
 key 
 : 
 object 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 data 
 . 
 _async 
 . 
 client 
 . 
 BigtableDataClientAsync 
 ], 
 loop 
 : 
 typing 
 . 
 Optional 
 [ 
 asyncio 
 . 
 events 
 . 
 AbstractEventLoop 
 ], 
 thread 
 : 
 typing 
 . 
 Optional 
 [ 
 threading 
 . 
 Thread 
 ], 
 ) 
 

Initializes the engine with a running event loop and a client.

See more: langchain_google_bigtable.engine.BigtableEngine

langchain_google_bigtable.engine.BigtableEngine.__start_background_loop

  __start_background_loop 
 ( 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ], 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> concurrent 
 . 
 futures 
 . 
 _base 
 . 
 Future 
 

Creates and starts the default background loop and thread.

See more: langchain_google_bigtable.engine.BigtableEngine.__start_background_loop

langchain_google_bigtable.engine.BigtableEngine._create

  _create 
 ( 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 loop 
 : 
 typing 
 . 
 Optional 
 [ 
 asyncio 
 . 
 events 
 . 
 AbstractEventLoop 
 ] 
 = 
 None 
 , 
 thread 
 : 
 typing 
 . 
 Optional 
 [ 
 threading 
 . 
 Thread 
 ] 
 = 
 None 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 data 
 . 
 _async 
 . 
 client 
 . 
 BigtableDataClientAsync 
 ] 
 = 
 None 
 , 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 

Asynchronously instantiates the BigtableEngine Object.

See more: langchain_google_bigtable.engine.BigtableEngine._create

langchain_google_bigtable.engine.BigtableEngine._run_as_async

  _run_as_async 
 ( 
 coro 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Any 
 

Runs a coroutine on the background loop without blocking the main loop.

See more: langchain_google_bigtable.engine.BigtableEngine._run_as_async

langchain_google_bigtable.engine.BigtableEngine._run_as_sync

  _run_as_sync 
 ( 
 coro 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Any 
 

Runs a coroutine on the background loop and waits for the result.

See more: langchain_google_bigtable.engine.BigtableEngine._run_as_sync

langchain_google_bigtable.engine.BigtableEngine.async_initialize

  async_initialize 
 ( 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 

Creates a BigtableEngine instance with a background event loop and a new data client asynchronously .

See more: langchain_google_bigtable.engine.BigtableEngine.async_initialize

langchain_google_bigtable.engine.BigtableEngine.close

  close 
 () 
 - 
> None 
 

Closes the underlying client for this specific engine instance.

See more: langchain_google_bigtable.engine.BigtableEngine.close

langchain_google_bigtable.engine.BigtableEngine.get_async_table

  get_async_table 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 app_profile_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> google 
 . 
 cloud 
 . 
 bigtable 
 . 
 data 
 . 
 _async 
 . 
 client 
 . 
 TableAsync 
 

Returns the table using this class's client.

See more: langchain_google_bigtable.engine.BigtableEngine.get_async_table

langchain_google_bigtable.engine.BigtableEngine.initialize

  initialize 
 ( 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 

Creates a BigtableEngine instance with a background event loop and a new data client synchronously.

See more: langchain_google_bigtable.engine.BigtableEngine.initialize

langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop

  shutdown_default_loop 
 () 
 - 
> None 
 

Closes the default class-level shared loop and terminates the thread associated with it.

See more: langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop

langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store

  _get_async_store 
 ( 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 , 
 ) 
 - 
> langchain_google_bigtable 
 . 
 async_key_value_store 
 . 
 AsyncBigtableByteStore 
 

Returns a AsyncBigtableByteStore object to be used for data operations.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store

langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete

  amdelete 
 ( 
 keys 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> None 
 

Asynchronously deletes key-value pairs from the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete

langchain_google_bigtable.key_value_store.BigtableByteStore.amget

  amget 
 ( 
 keys 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Optional 
 [ 
 bytes 
 ]] 
 

Asynchronously retrieves values for a sequence of keys.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amget

langchain_google_bigtable.key_value_store.BigtableByteStore.amset

  amset 
 ( 
 key_value_pairs 
 : 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Tuple 
 [ 
 str 
 , 
 bytes 
 ]]) 
 - 
> None 
 

Asynchronously stores key-value pairs in the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amset

langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys

  ayield_keys 
 ( 
 * 
 , 
 prefix 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> typing 
 . 
 AsyncIterator 
 [ 
 str 
 ] 
 

Asynchronously yields keys matching a given prefix.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys

langchain_google_bigtable.key_value_store.BigtableByteStore.create

  create 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 * 
 , 
 engine 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 ] 
 = 
 None 
 , 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 app_profile_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 column_family 
 : 
 str 
 = 
 "kv" 
 , 
 column_qualifier 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bytes 
 ] 
 = 
 b 
 "val" 
 , 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 key_value_store 
 . 
 BigtableByteStore 
 

Creates an async-initialized instance of the BigtableByteStore.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create

langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync

  create_sync 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 * 
 , 
 engine 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 ] 
 = 
 None 
 , 
 project_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 app_profile_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 column_family 
 : 
 str 
 = 
 "kv" 
 , 
 column_qualifier 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bytes 
 ] 
 = 
 b 
 "val" 
 , 
 credentials 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ] 
 = 
 None 
 , 
 client_options 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 key_value_store 
 . 
 BigtableByteStore 
 

Creates a sync-initialized instance of the BigtableByteStore.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync

langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine

  get_engine 
 () 
 - 
> langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 

Returns the BigtableEngine being used for this object.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine

langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete

  mdelete 
 ( 
 keys 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> None 
 

Synchronously deletes key-value pairs from the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete

langchain_google_bigtable.key_value_store.BigtableByteStore.mget

  mget 
 ( 
 keys 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Optional 
 [ 
 bytes 
 ]] 
 

Synchronously retrieves values for a sequence of keys.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mget

langchain_google_bigtable.key_value_store.BigtableByteStore.mset

  mset 
 ( 
 key_value_pairs 
 : 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Tuple 
 [ 
 str 
 , 
 bytes 
 ]]) 
 - 
> None 
 

Synchronously stores key-value pairs in the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mset

langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys

  yield_keys 
 ( 
 * 
 , 
 prefix 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> typing 
 . 
 Iterator 
 [ 
 str 
 ] 
 

Synchronously yields keys matching a given prefix.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys

langchain_google_bigtable.loader.BigtableLoader

  BigtableLoader 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 row_set 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 row_set 
 . 
 RowSet 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 row_filters 
 . 
 RowFilter 
 ] 
 = 
 None 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 content_encoding 
 : 
 langchain_google_bigtable 
 . 
 loader 
 . 
 Encoding 
 = 
 Encoding 
 . 
 UTF8 
 , 
 content_column_family 
 : 
 str 
 = 
 "langchain" 
 , 
 content_column_name 
 : 
 str 
 = 
 "content" 
 , 
 metadata_mappings 
 : 
 typing 
 . 
 List 
 [ 
 langchain_google_bigtable 
 . 
 loader 
 . 
 MetadataMapping 
 ] 
 = 
 [], 
 metadata_as_json_column_family 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 metadata_as_json_column_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 metadata_as_json_encoding 
 : 
 langchain_google_bigtable 
 . 
 loader 
 . 
 Encoding 
 = 
 Encoding 
 . 
 UTF8 
 , 
 ) 
 

Initialize Bigtable document loader.

See more: langchain_google_bigtable.loader.BigtableLoader

langchain_google_bigtable.loader.BigtableLoader.lazy_load

  lazy_load 
 () 
 - 
> typing 
 . 
 Iterator 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

A lazy loader for Documents.

See more: langchain_google_bigtable.loader.BigtableLoader.lazy_load

langchain_google_bigtable.loader.BigtableLoader.load

  load 
 () 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load data into Document objects.

See more: langchain_google_bigtable.loader.BigtableLoader.load

langchain_google_bigtable.loader.BigtableSaver

  BigtableSaver 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 client 
 : 
 typing 
 . 
 Optional 
 [ 
 google 
 . 
 cloud 
 . 
 bigtable 
 . 
 client 
 . 
 Client 
 ] 
 = 
 None 
 , 
 content_encoding 
 : 
 langchain_google_bigtable 
 . 
 loader 
 . 
 Encoding 
 = 
 Encoding 
 . 
 UTF8 
 , 
 content_column_family 
 : 
 str 
 = 
 "langchain" 
 , 
 content_column_name 
 : 
 str 
 = 
 "content" 
 , 
 metadata_mappings 
 : 
 typing 
 . 
 List 
 [ 
 langchain_google_bigtable 
 . 
 loader 
 . 
 MetadataMapping 
 ] 
 = 
 [], 
 metadata_as_json_column_family 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 metadata_as_json_column_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 metadata_as_json_encoding 
 : 
 langchain_google_bigtable 
 . 
 loader 
 . 
 Encoding 
 = 
 Encoding 
 . 
 UTF8 
 , 
 ) 
 

Initialize Bigtable document saver.

See more: langchain_google_bigtable.loader.BigtableSaver

langchain_google_bigtable.loader.BigtableSaver.add_documents

  add_documents 
 ( 
 docs 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Save documents in the DocumentSaver table.

See more: langchain_google_bigtable.loader.BigtableSaver.add_documents

langchain_google_bigtable.loader.BigtableSaver.delete

  delete 
 ( 
 docs 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_bigtable.loader.BigtableSaver.delete

langchain_google_bigtable.vector_store.BigtableVectorStore

  BigtableVectorStore 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 collection 
 : 
 str 
 , 
 content_column 
 : 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 ColumnConfig 
 = 
 ColumnConfig 
 ( 
 column_qualifier 
 = 
 'content' 
 , 
 column_family 
 = 
 'langchain' 
 , 
 encoding 
 = 
 

Initializes the BigtableVectorStore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore

langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store

  _get_async_store 
 () 
 - 
> ( 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 AsyncBigtableVectorStore 
 ) 
 

Lazily initializes and returns the underlying async store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store

langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents

  aadd_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts

  aadd_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents

  add_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts

  add_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.adelete

  adelete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents

  afrom_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 vector_store 
 . 
 BigtableVectorStore 
 

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts

  afrom_texts 
 ( 
 texts 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 vector_store 
 . 
 BigtableVectorStore 
 

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.aget_by_ids

  aget_by_ids 
 ( 
 ids 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ], 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search

  amax_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search

langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector

  amax_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever

  as_retriever 
 ( 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 , 
 ) 
 - 
> langchain_core 
 . 
 vectorstores 
 . 
 base 
 . 
 VectorStoreRetriever 
 

Return VectorStoreRetriever initialized from this VectorStore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search

  asimilarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_by_vector

  asimilarity_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs most similar to embedding vector.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_relevance_scores

  asimilarity_search_with_relevance_scores 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and relevance scores in the range [0, 1].

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_relevance_scores

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score

  asimilarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score_by_vector

  asimilarity_search_with_score_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.close

  close 
 () 
 - 
> None 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.create

  create 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 collection 
 : 
 str 
 , 
 engine 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 ColumnConfig 
 = 
 ColumnConfig 
 ( 
 column_qualifier 
 = 
 'content' 
 , 
 column_family 
 = 
 'langchain' 
 , 
 encoding 
 = 
 

Asynchronously initializes the engine and creates an instance of the vector store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create

langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync

  create_sync 
 ( 
 instance_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 collection 
 : 
 str 
 , 
 engine 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 ColumnConfig 
 = 
 ColumnConfig 
 ( 
 column_qualifier 
 = 
 'content' 
 , 
 column_family 
 = 
 'langchain' 
 , 
 encoding 
 = 
 

Synchronously initializes the engine and creates an instance of the vector store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync

langchain_google_bigtable.vector_store.BigtableVectorStore.delete

  delete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents

  from_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 vector_store 
 . 
 BigtableVectorStore 
 

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts

  from_texts 
 ( 
 texts 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_bigtable 
 . 
 vector_store 
 . 
 BigtableVectorStore 
 

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.get_by_ids

  get_by_ids 
 ( 
 ids 
 : 
 typing 
 . 
 Sequence 
 [ 
 str 
 ], 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.get_engine

  get_engine 
 () 
 - 
> typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 engine 
 . 
 BigtableEngine 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search

  max_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search

langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector

  max_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search

  similarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_by_vector

  similarity_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs most similar to embedding vector.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_relevance_scores

  similarity_search_with_relevance_scores 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and relevance scores in the range [0, 1].

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_relevance_scores

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score

  similarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score_by_vector

  similarity_search_with_score_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 int 
 = 
 4 
 , 
 query_parameters 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_bigtable 
 . 
 async_vector_store 
 . 
 QueryParameters 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 
Create a Mobile Website
View Site in Mobile | Classic
Share by: