Classify text with a large language model (Generative AI)

Perform classification tasks that assign a class or category to text. You can specify a list of categories to choose from or let the model choose from its own categories.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. EndpointName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictResponse 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceSettings 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 com.google.protobuf.util. JsonFormat 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.ArrayList 
 ; 
 import 
  
 java.util.List 
 ; 
 // Text Classification with a Large Language Model 
 public 
  
 class 
 PredictTextClassificationSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 instance 
  
 = 
  
 "{ \"content\": \"What is the topic for a given news headline?\n" 
  
 + 
  
 "- business\n" 
  
 + 
  
 "- entertainment\n" 
  
 + 
  
 "- health\n" 
  
 + 
  
 "- sports\n" 
  
 + 
  
 "- technology\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: Pixel 7 Pro Expert Hands On Review, the Most Helpful Google Phones.\n" 
  
 + 
  
 "The answer is: technology\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: Quit smoking?\n" 
  
 + 
  
 "The answer is: health\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: Roger Federer reveals why he touched Rafael Nadals hand while they were" 
  
 + 
  
 " crying\n" 
  
 + 
  
 "The answer is: sports\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: Business relief from Arizona minimum-wage hike looking more remote\n" 
  
 + 
  
 "The answer is: business\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: #TomCruise has arrived in Bari, Italy for #MissionImpossible.\n" 
  
 + 
  
 "The answer is: entertainment\n" 
  
 + 
  
 "\n" 
  
 + 
  
 "Text: CNBC Reports Rising Digital Profit as Print Advertising Falls\n" 
  
 + 
  
 "The answer is:\"}" 
 ; 
  
 String 
  
 parameters 
  
 = 
  
 "{\n" 
  
 + 
  
 "  \"temperature\": 0,\n" 
  
 + 
  
 "  \"maxDecodeSteps\": 5,\n" 
  
 + 
  
 "  \"topP\": 0,\n" 
  
 + 
  
 "  \"topK\": 1\n" 
  
 + 
  
 "}" 
 ; 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 publisher 
  
 = 
  
 "google" 
 ; 
  
 String 
  
 model 
  
 = 
  
 "text-bison@001" 
 ; 
  
 predictTextClassification 
 ( 
 instance 
 , 
  
 parameters 
 , 
  
 project 
 , 
  
 publisher 
 , 
  
 model 
 ); 
  
 } 
  
 static 
  
 void 
  
 predictTextClassification 
 ( 
  
 String 
  
 instance 
 , 
  
 String 
  
 parameters 
 , 
  
 String 
  
 project 
 , 
  
 String 
  
 publisher 
 , 
  
 String 
  
 model 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  PredictionServiceSettings 
 
  
 predictionServiceSettings 
  
 = 
  
  PredictionServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
 try 
  
 ( 
  PredictionServiceClient 
 
  
 predictionServiceClient 
  
 = 
  
  PredictionServiceClient 
 
 . 
 create 
 ( 
 predictionServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
 final 
  
  EndpointName 
 
  
 endpointName 
  
 = 
  
  EndpointName 
 
 . 
  ofProjectLocationPublisherModelName 
 
 ( 
 project 
 , 
  
 location 
 , 
  
 publisher 
 , 
  
 model 
 ); 
  
  Value 
 
 . 
 Builder 
  
 instanceValue 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 instance 
 , 
  
 instanceValue 
 ); 
  
  List<Value> 
 
  
 instances 
  
 = 
  
 new 
  
 ArrayList 
<> (); 
  
 instances 
 . 
 add 
 ( 
 instanceValue 
 . 
 build 
 ()); 
  
  Value 
 
 . 
 Builder 
  
 parameterValueBuilder 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 parameters 
 , 
  
 parameterValueBuilder 
 ); 
  
  Value 
 
  
 parameterValue 
  
 = 
  
 parameterValueBuilder 
 . 
 build 
 (); 
  
  PredictResponse 
 
  
 predictResponse 
  
 = 
  
 predictionServiceClient 
 . 
 predict 
 ( 
 endpointName 
 , 
  
 instances 
 , 
  
 parameterValue 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Predict Response" 
 ); 
  
 } 
  
 } 
 } 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: