ee.FeatureCollection.aggregate_stats

Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.
Usage Returns
FeatureCollection. aggregate_stats (property) Dictionary
Argument Type Details
this: collection
FeatureCollection The collection to aggregate over.
property
String The property to use from each element of the collection.

Examples

Code Editor (JavaScript)

 // FeatureCollection of power plants in Belgium. 
 var 
  
 fc 
  
 = 
  
 ee 
 . 
 FeatureCollection 
 ( 
 'WRI/GPPD/power_plants' 
 ) 
  
 . 
 filter 
 ( 
 'country_lg == "Belgium"' 
 ); 
 print 
 ( 
 'Power plant capacities (MW) summary stats' 
 , 
  
 fc 
 . 
 aggregate_stats 
 ( 
 'capacitymw' 
 )); 
 /** 
 * Expected ee.Dictionary output 
 * 
 * { 
 *   "max": 2910, 
 *   "mean": 201.34242424242427, 
 *   "min": 1.8, 
 *   "sample_sd": 466.4808892319684, 
 *   "sample_var": 217604.42001864797, 
 *   "sum": 13288.600000000002, 
 *   "sum_sq": 16819846.24, 
 *   "total_count": 66, 
 *   "total_sd": 462.9334545609107, 
 *   "total_var": 214307.38335169878, 
 *   "valid_count": 66, 
 *   "weight_sum": 66, 
 *   "weighted_sum": 13288.600000000002 
 * } 
 */ 

Python setup

See the Python Environment page for information on the Python API and using geemap for interactive development.

 import 
  
 ee 
 import 
  
 geemap.core 
  
 as 
  
 geemap 

Colab (Python)

 from 
  
 pprint 
  
 import 
 pprint 
 # FeatureCollection of power plants in Belgium. 
 fc 
 = 
 ee 
 . 
 FeatureCollection 
 ( 
 'WRI/GPPD/power_plants' 
 ) 
 . 
 filter 
 ( 
 'country_lg == "Belgium"' 
 ) 
 print 
 ( 
 'Power plant capacities (MW) summary stats:' 
 ) 
 pprint 
 ( 
 fc 
 . 
 aggregate_stats 
 ( 
 'capacitymw' 
 ) 
 . 
 getInfo 
 ()) 
 # Expected ee.Dictionary output 
 #  { 
 #   "max": 2910, 
 #    "mean": 201.34242424242427, 
 #    "min": 1.8, 
 #    "sample_sd": 466.4808892319684, 
 #    "sample_var": 217604.42001864797, 
 #    "sum": 13288.600000000002, 
 #    "sum_sq": 16819846.24, 
 #    "total_count": 66, 
 #    "total_sd": 462.9334545609107, 
 #    "total_var": 214307.38335169878, 
 #    "valid_count": 66, 
 #    "weight_sum": 66, 
 #    "weighted_sum": 13288.600000000002 
 #  } 
Create a Mobile Website
View Site in Mobile | Classic
Share by: