AI-generated Key Takeaways
-
The
length()method returns the length of the linear parts of a geometry, ignoring polygonal parts. -
For multi geometries, the length is the sum of the lengths of their components.
-
Optional arguments include
maxErrorfor error tolerance during reprojection andprojto specify the output coordinate system units. -
The method can be applied to a
LinearRingobject, as demonstrated in the provided JavaScript and Python examples.
| Usage | Returns |
|---|---|
LinearRing.
length
( maxError
, proj
)
|
Float |
| Argument | Type | Details |
|---|---|---|
|
this:
geometry
|
Geometry | The input geometry. |
maxError
|
ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj
|
Projection, default: null | If specified, the result will be in the units of the coordinate system of this projection. Otherwise it will be in meters. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object. var linearRing = ee . Geometry . LinearRing ( [[ - 122.091 , 37.420 ], [ - 122.085 , 37.422 ], [ - 122.080 , 37.430 ]]); // Apply the length method to the LinearRing object. var linearRingLength = linearRing . length (); // Print the result to the console. print ( 'linearRing.length(...) =' , linearRingLength ); // Display relevant geometries on the map. Map . setCenter ( - 122.085 , 37.422 , 15 ); Map . addLayer ( linearRing , { 'color' : 'black' }, 'Geometry [black]: linearRing' );
import ee import geemap.core as geemap
Colab (Python)
# Define a LinearRing object. linearring = ee . Geometry . LinearRing ( [[ - 122.091 , 37.420 ], [ - 122.085 , 37.422 ], [ - 122.080 , 37.430 ]] ) # Apply the length method to the LinearRing object. linearring_length = linearring . length () # Print the result. display ( 'linearring.length(...) =' , linearring_length ) # Display relevant geometries on the map. m = geemap . Map () m . set_center ( - 122.085 , 37.422 , 15 ) m . add_layer ( linearring , { 'color' : 'black' }, 'Geometry [black]: linearring' ) m

