ee.Kernel.manhattan

  • ee.Kernel.manhattan generates a distance kernel based on rectilinear (city-block) distance.

  • The function takes arguments for radius , optional units , normalize , and magnitude .

  • Examples in JavaScript and Python demonstrate how to create and print a Manhattan kernel with a radius of 3.

Generates a distance kernel based on rectilinear (city-block) distance.
Usage Returns
ee.Kernel.manhattan(radius, units , normalize , magnitude ) Kernel
Argument Type Details
radius
Float The radius of the kernel to generate.
units
String, default: "pixels" The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed.
normalize
Boolean, default: false Normalize the kernel values to sum to 1.
magnitude
Float, default: 1 Scale each value by this amount.

Examples

Code Editor (JavaScript)

 print 
 ( 
 'A Manhattan kernel' 
 , 
  
 ee 
 . 
 Kernel 
 . 
 manhattan 
 ({ 
 radius 
 : 
  
 3 
 })); 
 /** 
 * Output weights matrix 
 * 
 * [6, 5, 4, 3, 4, 5, 6] 
 * [5, 4, 3, 2, 3, 4, 5] 
 * [4, 3, 2, 1, 2, 3, 4] 
 * [3, 2, 1, 0, 1, 2, 3] 
 * [4, 3, 2, 1, 2, 3, 4] 
 * [5, 4, 3, 2, 3, 4, 5] 
 * [6, 5, 4, 3, 4, 5, 6] 
 */ 

Python setup

See the Python Environment page for information on the Python API and using geemap for interactive development.

 import 
  
 ee 
 import 
  
 geemap.core 
  
 as 
  
 geemap 

Colab (Python)

 display 
 ( 
 'A Manhattan kernel:' 
 , 
 ee 
 . 
 Kernel 
 . 
 manhattan 
 ( 
 ** 
 { 
 'radius' 
 : 
 3 
 })) 
 #  Output weights matrix 
 #  [6, 5, 4, 3, 4, 5, 6] 
 #  [5, 4, 3, 2, 3, 4, 5] 
 #  [4, 3, 2, 1, 2, 3, 4] 
 #  [3, 2, 1, 0, 1, 2, 3] 
 #  [4, 3, 2, 1, 2, 3, 4] 
 #  [5, 4, 3, 2, 3, 4, 5] 
 #  [6, 5, 4, 3, 4, 5, 6] 
Create a Mobile Website
View Site in Mobile | Classic
Share by: