Get started with Genkit
This guide shows you how to get started with Genkit in your preferred language and test it in the Developer UI.
Prerequisites
Section titled “Prerequisites”Before you begin, make sure your environment meets these requirements:
- Node.js v20 or later
- npm
This guide assumes you’re already familiar with building Node.js applications.
- Go 1.24 or later ( Download and install )
This guide assumes you’re already familiar with building Go applications.
- Python 3.10 or later ( Download and install )
Set up your project
Section titled “Set up your project”Create a new Node.js project and configure TypeScript:
mkdir
my-genkit-app
cd
my-genkit-app
npm
init
-y
# Set up your source directory
mkdir
src
touch
src/index.ts
# Install and configure TypeScript
npm
install
-D
typescript
tsx
npx
tsc
--init
This sets up your project structure and a TypeScript entry point at src/index.ts
.
Initialize a new Go project directory:
mkdir
genkit-intro
&&
cd
genkit-intro
go
mod
init
example/genkit-intro
Create a main.go
file for your application entry point.
Create a new project directory and set up a virtual environment:
mkdir
genkit-intro
&&
cd
genkit-intro
(Recommended) Create a Python virtual environment:
python3
-m
venv
.
Activate the virtual environment if necessary:
source
bin/activate
# for bash
Install Genkit packages
Section titled “Install Genkit packages”First, install the Genkit CLI. This gives you access to local developer tools, including the Developer UI:
curl
-sL
cli.genkit.dev
|
bash
First, install the Genkit CLI globally. This gives you access to local developer tools, including the Developer UI:
npm
install
-g
genkit-cli
Then, add the following packages to your project:
npm
install
genkit
@genkit-ai/google-genai
-
genkit
provides Genkit core capabilities. -
@genkit-ai/google-genai
provides access to the Google AI Gemini models.
Then, install the Genkit package for Go:
go
get
github.com/firebase/genkit/go
This provides Genkit core capabilities and access to Google AI Gemini models.
Then, install the required Python packages:
pip3
install
genkit
pip3
install
genkit-plugin-google-genai
Or create a requirements.txt
file:
genkit
genkit-plugin-google-genai
and run:
pip3
install
-r
requirements.txt
Configure your model API key
Section titled “Configure your model API key”Genkit can work with multiple model providers. This guide uses the Gemini API, which offers a generous free tier and doesn’t require a credit card to get started.
To use it, you’ll need an API key from Google AI Studio:
Get a Gemini API Key
Once you have a key, set the GEMINI_API_KEY
environment variable:
export
GEMINI_API_KEY
=
<your API key>
Create your first application
Section titled “Create your first application”A flow is a special Genkit function with built-in observability, type safety, and tooling integration.
Update src/index.ts
with the following:
import
{ googleAI }
from
'@genkit-ai/google-genai'
;
import
{ genkit, z }
from
'genkit'
;
// Initialize Genkit with the Google AI plugin
const
ai
=
genkit
({
plugins: [
googleAI
()],
model: googleAI.
model
(
'gemini-2.5-flash'
, {
temperature:
0.8
,
}),
});
// Define input schema
const
RecipeInputSchema
=
z.
object
({
ingredient: z.
string
().
describe
(
'Main ingredient or cuisine type'
),
dietaryRestrictions: z.
string
().
optional
().
describe
(
'Any dietary restrictions'
),
});
// Define output schema
const
RecipeSchema
=
z.
object
({
title: z.
string
(),
description: z.
string
(),
prepTime: z.
string
(),
cookTime: z.
string
(),
servings: z.
number
(),
ingredients: z.
array
(z.
string
()),
instructions: z.
array
(z.
string
()),
tips: z.
array
(z.
string
()).
optional
(),
});
// Define a recipe generator flow
export
const
recipeGeneratorFlow
=
ai.
defineFlow
(
{
name:
'recipeGeneratorFlow'
,
inputSchema: RecipeInputSchema,
outputSchema: RecipeSchema,
},
async
(
input
)
=>
{
// Create a prompt based on the input
const
prompt
=
`Create a recipe with the following requirements:
Main ingredient: ${
input
.
ingredient
}
Dietary restrictions: ${
input
.
dietaryRestrictions
||
'none'}`
;
// Generate structured recipe data using the same schema
const
{
output
}
=
await
ai.
generate
({
prompt,
output: { schema: RecipeSchema },
});
if
(
!
output)
throw
new
Error
(
'Failed to generate recipe'
);
return
output;
},
);
// Run the flow
async
function
main
() {
const
recipe
=
await
recipeGeneratorFlow
({
ingredient:
'avocado'
,
dietaryRestrictions:
'vegetarian'
,
});
console.
log
(recipe);
}
main
().
catch
(console.error);
This code sample:
- Defines reusable input and output schemas with Zod
- Configures the
gemini-2.5-flash
model with temperature settings - Defines a Genkit flow to generate a structured recipe based on your input
- Runs the flow with a sample input and prints the result
Create a main.go
file with the following sample code:
package
main
import
(
"
context
"
"
encoding/json
"
"
fmt
"
"
log
"
"
github.com/firebase/genkit/go/ai
"
"
github.com/firebase/genkit/go/genkit
"
"
github.com/firebase/genkit/go/plugins/googlegenai
"
)
// Define input schema
type
RecipeInput
struct
{
Ingredient
string
`json:"ingredient" jsonschema:"description=Main ingredient or cuisine type"`
DietaryRestrictions
string
`json:"dietaryRestrictions,omitempty" jsonschema:"description=Any dietary restrictions"`
}
// Define output schema
type
Recipe
struct
{
Title
string
`json:"title"`
Description
string
`json:"description"`
PrepTime
string
`json:"prepTime"`
CookTime
string
`json:"cookTime"`
Servings
int
`json:"servings"`
Ingredients []
string
`json:"ingredients"`
Instructions []
string
`json:"instructions"`
Tips []
string
`json:"tips,omitempty"`
}
func
main
() {
ctx
:=
context.
Background
()
// Initialize Genkit with the Google AI plugin
g
:=
genkit.
Init
(ctx,
genkit.
WithPlugins
(
&
googlegenai
.
GoogleAI
{}),
genkit.
WithDefaultModel
(
"googleai/gemini-2.5-flash"
),
)
// Define a recipe generator flow
recipeGeneratorFlow
:=
genkit.
DefineFlow
(g,
"recipeGeneratorFlow"
,
func
(
ctx
context
.
Context
,
input
*
RecipeInput
) (
*
Recipe
,
error
) {
// Create a prompt based on the input
dietaryRestrictions
:=
input.DietaryRestrictions
if
dietaryRestrictions
==
""
{
dietaryRestrictions
=
"none"
}
prompt
:=
fmt.
Sprintf
(
`Create a recipe with the following requirements:
Main ingredient:
%s
Dietary restrictions:
%s
`
, input.Ingredient, dietaryRestrictions)
// Generate structured recipe data using the same schema
recipe, _, err
:=
genkit.
GenerateData
[
Recipe
](ctx, g,
ai.
WithPrompt
(prompt),
)
if
err
!=
nil
{
return
nil
, fmt.
Errorf
(
"failed to generate recipe:
%w
"
, err)
}
return
recipe,
nil
})
// Run the flow
recipe, err
:=
recipeGeneratorFlow.
Run
(ctx,
&
RecipeInput
{
Ingredient:
"avocado"
,
DietaryRestrictions:
"vegetarian"
,
})
if
err
!=
nil
{
log.
Fatalf
(
"could not generate recipe:
%v
"
, err)
}
// Print the structured recipe
recipeJSON, _
:=
json.
MarshalIndent
(recipe,
""
,
" "
)
fmt.
Println
(
string
(recipeJSON))
}
This code sample:
- Defines reusable input and output schemas using Go structs with JSON schema tags
- Configures the
gemini-2.5-flash
model as the default - Defines a Genkit flow to generate a structured recipe based on your input
- Runs the flow with a sample input and prints the structured result
Create a main.py
file:
import
json
from
typing
import
Optional
from
pydantic
import
BaseModel, Field
from
genkit.ai
import
Genkit
from
genkit.plugins.google_genai
import
GoogleAI
# Initialize Genkit with the Google AI plugin
ai
=
Genkit(
plugins
=
[GoogleAI()],
model
=
'googleai/gemini-2.5-flash'
,
)
# Define input schema
class
RecipeInput
(
BaseModel
):
ingredient:
str
=
Field(
description
=
'Main ingredient or cuisine type'
)
dietary_restrictions: Optional[
str
]
=
Field(
default
=
None
,
description
=
'Any dietary restrictions'
)
# Define output schema
class
Recipe
(
BaseModel
):
title:
str
description:
str
prep_time:
str
cook_time:
str
servings:
int
ingredients: list[
str
]
instructions: list[
str
]
# Define a recipe generator flow
@ai.flow
()
async
def
recipe_generator_flow
(input_data: RecipeInput) -> Recipe:
# Create a prompt based on the input
dietary_restrictions
=
input_data.dietary_restrictions
or
'none'
prompt
=
f
"""Create a recipe with the following requirements:
Main ingredient:
{
input_data.ingredient
}
Dietary restrictions:
{
dietary_restrictions
}
"""
# Generate structured recipe data using the same schema
result
=
await
ai.generate(
prompt
=
prompt,
output_schema
=
Recipe,
)
if
not
result.output:
raise
ValueError
(
'Failed to generate recipe'
)
return
result.output
async
def
main
() ->
None
:
# Run the flow
recipe
=
await
recipe_generator_flow(RecipeInput(
ingredient
=
'avocado'
,
dietary_restrictions
=
'vegetarian'
))
# Print the structured recipe
print
(json.dumps(recipe,
indent
=
2
))
ai.run_main(main())
This code sample:
- Defines reusable input and output schemas with Pydantic
- Configures the
gemini-2.5-flash
model as the default - Defines a Genkit flow to generate a structured recipe based on your input
- Runs the flow with a sample input and prints the structured result
Why use flows?
Section titled “Why use flows?”- Type-safe inputs and outputs: Define clear schemas for your data
- Integrates with the Developer UI: Test and debug flows visually
- Easy deployment as APIs: Deploy flows as HTTP endpoints
- Built-in tracing and observability: Monitor performance and debug issues
Run your application
Section titled “Run your application”Run your application to see it in action:
npx
tsx
src/index.ts
You should see a structured recipe output in your console.
Run your application to see it in action:
go
run
.
You should see a structured recipe output in JSON format.
Run your app (Genkit apps are just regular Python applications):
python3
main.py
You should see a structured recipe output in JSON format.
Test in the Developer UI
Section titled “Test in the Developer UI”The Developer UIis a local tool for testing and inspecting Genkit components, like flows, with a visual interface.
Start the Developer UI
Section titled “Start the Developer UI”The Genkit CLI is required to run the Developer UI. If you followed the installation steps above, you already have it installed.
Run the following command from your project root:
genkit
start
--
npx
tsx
--watch
src/index.ts
This starts your app and launches the Developer UI at http://localhost:4000
by default.
Optional: Add an npm script
Section titled “Optional: Add an npm script”To make starting the Developer UI easier, add the following to your package.json
scripts:
"scripts"
: {
"genkit:ui"
:
"genkit start -- npx tsx --watch src/index.ts"
}
Then run it with:
npm
run
genkit:ui
Run the following command from your project root:
genkit
start
--
go
run
.
This starts your app and launches the Developer UI at http://localhost:4000
by default.
To inspect your app with Genkit Dev UI, run:
genkit
start
--
python3
main.py
The command will print the Dev UI URL:
Genkit Developer UI: http://localhost:4000
Run and inspect flows
Section titled “Run and inspect flows”In the Developer UI:
-
Select your recipe generator flow from the list of flows:
-recipeGeneratorFlow
-recipe_generator_flow
-
Enter sample input:
{
"ingredient"
:
"avocado"
,
"dietaryRestrictions"
:
"vegetarian"
}
{
"ingredient"
:
"avocado"
,
"dietary_restrictions"
:
"vegetarian"
}
- Click Run
You’ll see the generated recipe as structured output, along with a visual trace of the AI generation process for debugging and optimization.
Next steps
Section titled “Next steps”Now that you’ve created and tested your first Genkit application, explore more features to build powerful AI-driven applications:
- Developer tools : Set up your local workflow with the Genkit CLI and Dev UI.
- Generating content : Use Genkit’s unified generation API to work with multimodal and structured output across supported models.
- Creating flows : Learn about streaming flows, schema customization, deployment options, and more.
- Tool calling : Enable your AI models to interact with external systems and APIs.
- Managing prompts with Dotprompt
: Define flexible prompt templates using
.prompt
files or code.