Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item.Attribution.output_indexcan be used to identify which output this attribution is explaining. ThebaselineOutputValue,instanceOutputValueandfeatureAttributionsfields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts.Attribution.approximation_erroris not populated.
getMeanAttributions
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.Attribution.output_indexcan be used to identify which output this attribution is explaining.
ThebaselineOutputValue,instanceOutputValueandfeatureAttributionsfields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.Attribution.approximation_erroris not populated.
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.Attribution.output_indexcan be used to identify which output this attribution is explaining.
ThebaselineOutputValue,instanceOutputValueandfeatureAttributionsfields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.Attribution.approximation_erroris not populated.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Google Cloud Ai Platform V1 Client - Class ModelExplanation (1.35.0)\n\nVersion latestkeyboard_arrow_down\n\n- [1.35.0 (latest)](/php/docs/reference/cloud-ai-platform/latest/V1.ModelExplanation)\n- [1.34.0](/php/docs/reference/cloud-ai-platform/1.34.0/V1.ModelExplanation)\n- [1.33.0](/php/docs/reference/cloud-ai-platform/1.33.0/V1.ModelExplanation)\n- [1.32.1](/php/docs/reference/cloud-ai-platform/1.32.1/V1.ModelExplanation)\n- [1.31.0](/php/docs/reference/cloud-ai-platform/1.31.0/V1.ModelExplanation)\n- [1.30.0](/php/docs/reference/cloud-ai-platform/1.30.0/V1.ModelExplanation)\n- [1.26.0](/php/docs/reference/cloud-ai-platform/1.26.0/V1.ModelExplanation)\n- [1.23.0](/php/docs/reference/cloud-ai-platform/1.23.0/V1.ModelExplanation)\n- [1.22.0](/php/docs/reference/cloud-ai-platform/1.22.0/V1.ModelExplanation)\n- [1.21.0](/php/docs/reference/cloud-ai-platform/1.21.0/V1.ModelExplanation)\n- [1.20.0](/php/docs/reference/cloud-ai-platform/1.20.0/V1.ModelExplanation)\n- [1.19.0](/php/docs/reference/cloud-ai-platform/1.19.0/V1.ModelExplanation)\n- [1.18.0](/php/docs/reference/cloud-ai-platform/1.18.0/V1.ModelExplanation)\n- [1.17.0](/php/docs/reference/cloud-ai-platform/1.17.0/V1.ModelExplanation)\n- [1.16.0](/php/docs/reference/cloud-ai-platform/1.16.0/V1.ModelExplanation)\n- [1.15.0](/php/docs/reference/cloud-ai-platform/1.15.0/V1.ModelExplanation)\n- [1.14.0](/php/docs/reference/cloud-ai-platform/1.14.0/V1.ModelExplanation)\n- [1.13.1](/php/docs/reference/cloud-ai-platform/1.13.1/V1.ModelExplanation)\n- [1.12.0](/php/docs/reference/cloud-ai-platform/1.12.0/V1.ModelExplanation)\n- [1.11.0](/php/docs/reference/cloud-ai-platform/1.11.0/V1.ModelExplanation)\n- [1.10.0](/php/docs/reference/cloud-ai-platform/1.10.0/V1.ModelExplanation)\n- [1.9.0](/php/docs/reference/cloud-ai-platform/1.9.0/V1.ModelExplanation)\n- [1.8.0](/php/docs/reference/cloud-ai-platform/1.8.0/V1.ModelExplanation)\n- [1.7.0](/php/docs/reference/cloud-ai-platform/1.7.0/V1.ModelExplanation)\n- [1.6.0](/php/docs/reference/cloud-ai-platform/1.6.0/V1.ModelExplanation)\n- [1.5.0](/php/docs/reference/cloud-ai-platform/1.5.0/V1.ModelExplanation)\n- [1.4.0](/php/docs/reference/cloud-ai-platform/1.4.0/V1.ModelExplanation)\n- [1.3.0](/php/docs/reference/cloud-ai-platform/1.3.0/V1.ModelExplanation)\n- [1.2.0](/php/docs/reference/cloud-ai-platform/1.2.0/V1.ModelExplanation)\n- [1.1.0](/php/docs/reference/cloud-ai-platform/1.1.0/V1.ModelExplanation)\n- [1.0.0](/php/docs/reference/cloud-ai-platform/1.0.0/V1.ModelExplanation)\n- [0.39.0](/php/docs/reference/cloud-ai-platform/0.39.0/V1.ModelExplanation)\n- [0.38.0](/php/docs/reference/cloud-ai-platform/0.38.0/V1.ModelExplanation)\n- [0.37.1](/php/docs/reference/cloud-ai-platform/0.37.1/V1.ModelExplanation)\n- [0.32.0](/php/docs/reference/cloud-ai-platform/0.32.0/V1.ModelExplanation)\n- [0.31.0](/php/docs/reference/cloud-ai-platform/0.31.0/V1.ModelExplanation)\n- [0.30.0](/php/docs/reference/cloud-ai-platform/0.30.0/V1.ModelExplanation)\n- [0.29.0](/php/docs/reference/cloud-ai-platform/0.29.0/V1.ModelExplanation)\n- [0.28.0](/php/docs/reference/cloud-ai-platform/0.28.0/V1.ModelExplanation)\n- [0.27.0](/php/docs/reference/cloud-ai-platform/0.27.0/V1.ModelExplanation)\n- [0.26.2](/php/docs/reference/cloud-ai-platform/0.26.2/V1.ModelExplanation)\n- [0.25.0](/php/docs/reference/cloud-ai-platform/0.25.0/V1.ModelExplanation)\n- [0.24.0](/php/docs/reference/cloud-ai-platform/0.24.0/V1.ModelExplanation)\n- [0.23.0](/php/docs/reference/cloud-ai-platform/0.23.0/V1.ModelExplanation)\n- [0.22.0](/php/docs/reference/cloud-ai-platform/0.22.0/V1.ModelExplanation)\n- [0.21.0](/php/docs/reference/cloud-ai-platform/0.21.0/V1.ModelExplanation)\n- [0.20.0](/php/docs/reference/cloud-ai-platform/0.20.0/V1.ModelExplanation)\n- [0.19.0](/php/docs/reference/cloud-ai-platform/0.19.0/V1.ModelExplanation)\n- [0.18.0](/php/docs/reference/cloud-ai-platform/0.18.0/V1.ModelExplanation)\n- [0.17.0](/php/docs/reference/cloud-ai-platform/0.17.0/V1.ModelExplanation)\n- [0.16.0](/php/docs/reference/cloud-ai-platform/0.16.0/V1.ModelExplanation)\n- [0.15.0](/php/docs/reference/cloud-ai-platform/0.15.0/V1.ModelExplanation)\n- [0.13.0](/php/docs/reference/cloud-ai-platform/0.13.0/V1.ModelExplanation)\n- [0.12.0](/php/docs/reference/cloud-ai-platform/0.12.0/V1.ModelExplanation)\n- [0.11.1](/php/docs/reference/cloud-ai-platform/0.11.1/V1.ModelExplanation)\n- [0.10.0](/php/docs/reference/cloud-ai-platform/0.10.0/V1.ModelExplanation) \nReference documentation and code samples for the Google Cloud Ai Platform V1 Client class ModelExplanation.\n\nAggregated explanation metrics for a Model over a set of instances.\n\nGenerated from protobuf message `google.cloud.aiplatform.v1.ModelExplanation`\n\nNamespace\n---------\n\nGoogle \\\\ Cloud \\\\ AIPlatform \\\\ V1\n\nMethods\n-------\n\n### __construct\n\nConstructor.\n\n### getMeanAttributions\n\nOutput only. Aggregated attributions explaining the Model's prediction\noutputs over the set of instances. The attributions are grouped by outputs.\n\nFor Models that predict only one output, such as regression Models that\npredict only one score, there is only one attibution that explains the\npredicted output. For Models that predict multiple outputs, such as\nmulticlass Models that predict multiple classes, each element explains one\nspecific item.\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncan be used to identify which output this attribution is explaining.\nThe\n[baselineOutputValue](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getBaselineOutputValue__),\n[instanceOutputValue](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getInstanceOutputValue__)\nand\n[featureAttributions](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getFeatureAttributions__)\nfields are averaged over the test data.\nNOTE: Currently AutoML tabular classification Models produce only one\nattribution, which averages attributions over all the classes it predicts.\n[Attribution.approximation_error](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getApproximationError__)\nis not populated.\n\n### setMeanAttributions\n\nOutput only. Aggregated attributions explaining the Model's prediction\noutputs over the set of instances. The attributions are grouped by outputs.\n\nFor Models that predict only one output, such as regression Models that\npredict only one score, there is only one attibution that explains the\npredicted output. For Models that predict multiple outputs, such as\nmulticlass Models that predict multiple classes, each element explains one\nspecific item.\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncan be used to identify which output this attribution is explaining.\nThe\n[baselineOutputValue](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getBaselineOutputValue__),\n[instanceOutputValue](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getInstanceOutputValue__)\nand\n[featureAttributions](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getFeatureAttributions__)\nfields are averaged over the test data.\nNOTE: Currently AutoML tabular classification Models produce only one\nattribution, which averages attributions over all the classes it predicts.\n[Attribution.approximation_error](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getApproximationError__)\nis not populated."]]