Explain for tabular

Gets explanation for tabular using the explain method.

Code sample

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 typing 
  
 import 
 Dict 
 from 
  
 google.cloud 
  
 import 
 aiplatform_v1beta1 
 from 
  
 google.protobuf 
  
 import 
 json_format 
 from 
  
 google.protobuf.struct_pb2 
  
 import 
 Value 
 def 
  
 explain_tabular_sample 
 ( 
 project 
 : 
 str 
 , 
 endpoint_id 
 : 
 str 
 , 
 instance_dict 
 : 
 Dict 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform_v1beta1 
 . 
  PredictionServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 # The format of each instance should conform to the deployed model's prediction input schema. 
 instance 
 = 
 json_format 
 . 
 ParseDict 
 ( 
 instance_dict 
 , 
 Value 
 ()) 
 instances 
 = 
 [ 
 instance 
 ] 
 # tabular models do not have additional parameters 
 parameters_dict 
 = 
 {} 
 parameters 
 = 
 json_format 
 . 
 ParseDict 
 ( 
 parameters_dict 
 , 
 Value 
 ()) 
 endpoint 
 = 
 client 
 . 
  endpoint_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 endpoint 
 = 
 endpoint_id 
 ) 
 response 
 = 
 client 
 . 
  explain 
 
 ( 
 endpoint 
 = 
 endpoint 
 , 
 instances 
 = 
 instances 
 , 
 parameters 
 = 
 parameters 
 ) 
 print 
 ( 
 "response" 
 ) 
 print 
 ( 
 " deployed_model_id:" 
 , 
 response 
 . 
 deployed_model_id 
 ) 
 explanations 
 = 
 response 
 . 
 explanations 
 for 
 explanation 
 in 
 explanations 
 : 
 print 
 ( 
 " explanation" 
 ) 
 # Feature attributions. 
 attributions 
 = 
 explanation 
 . 
 attributions 
 for 
 attribution 
 in 
 attributions 
 : 
 print 
 ( 
 "  attribution" 
 ) 
 print 
 ( 
 "   baseline_output_value:" 
 , 
 attribution 
 . 
 baseline_output_value 
 ) 
 print 
 ( 
 "   instance_output_value:" 
 , 
 attribution 
 . 
 instance_output_value 
 ) 
 print 
 ( 
 "   output_display_name:" 
 , 
 attribution 
 . 
 output_display_name 
 ) 
 print 
 ( 
 "   approximation_error:" 
 , 
 attribution 
 . 
 approximation_error 
 ) 
 print 
 ( 
 "   output_name:" 
 , 
 attribution 
 . 
 output_name 
 ) 
 output_index 
 = 
 attribution 
 . 
 output_index 
 for 
 output_index 
 in 
 output_index 
 : 
 print 
 ( 
 "   output_index:" 
 , 
 output_index 
 ) 
 predictions 
 = 
 response 
 . 
 predictions 
 for 
 prediction 
 in 
 predictions 
 : 
 print 
 ( 
 " prediction:" 
 , 
 dict 
 ( 
 prediction 
 )) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: