Stay organized with collectionsSave and categorize content based on your preferences.
Returns the intersection of the two geometries.
Usage
Returns
LinearRing.intersection(right,maxError,proj)
Geometry
Argument
Type
Details
this:left
Geometry
The geometry used as the left operand of the operation.
right
Geometry
The geometry used as the right operand of the operation.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[[["\u003cp\u003eReturns a Geometry representing the shared area between two geometries.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a right-hand Geometry operand, optional error margin, and projection for the operation.\u003c/p\u003e\n"],["\u003cp\u003eCan be applied to LinearRing geometries to find the intersecting portion with another geometry.\u003c/p\u003e\n"],["\u003cp\u003eIf projection is unspecified, calculations occur in a spherical coordinate system with distances in meters.\u003c/p\u003e\n"]]],["The `intersection` method computes the overlapping area between two geometries. It takes a `right` geometry as input, and optionally `maxError` for reprojection tolerance, and `proj` for a specific projection. The method is used by calling it on a `LinearRing` geometry with the other geometry provided as an argument. The output, which represents the intersection, is also a geometry, the result of which is returned.\n"],null,["# ee.Geometry.LinearRing.intersection\n\nReturns the intersection of the two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------------------|----------|\n| LinearRing.intersection`(right, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|--------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);\n\n// Apply the intersection method to the LinearRing object.\nvar linearRingIntersection = linearRing.intersection({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.intersection(...) =', linearRingIntersection);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\nMap.addLayer(linearRingIntersection,\n {'color': 'red'},\n 'Result [red]: linearRing.intersection');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Define other inputs.\ninput_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)\n\n# Apply the intersection method to the LinearRing object.\nlinearring_intersection = linearring.intersection(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('linearring.intersection(...) =', linearring_intersection)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm.add_layer(\n linearring_intersection,\n {'color': 'red'},\n 'Result [red]: linearring.intersection',\n)\nm\n```"]]