Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11056 publications
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    Semantic Data Modeling, Graph Query, and SQL, Together at Last?
    Colin Zheng
    Romit Kudtarkar
    CIDR (2026) (to appear)
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Preview abstract Web browser fingerprinting can be used to identify and track users across the Web, even without cookies, by collecting attributes from users' devices to create unique "fingerprints". This technique and resulting privacy risks have been studied for over a decade. Yet further research is limited because prior studies did not openly publish their data. Additionally, data in prior studies had biases and lacked user demographics. Here we publish a first-of-its-kind open dataset that includes browser attributes with users' demographics, collected from 8,400 US study participants, with their informed consent. Our data collection process also conducted an experiment to study what impacts users' likelihood to share browser data for open research, in order to inform future data collection efforts, with survey responses from a total of 12,461 participants. Female participants were significantly less likely to share their browser data, as were participants who were shown the browser data we asked to collect. In addition we demonstrate how fingerprinting risks differ across demographic groups. For example, we find lower income users are more at risk, and find that as users' age increases, they are both more likely to be concerned about fingerprinting and at real risk of fingerprinting. Furthermore, we demonstrate an overlooked risk: user demographics, such as gender, age, income level, ethnicity and race, can be inferred from browser attributes commonly used for fingerprinting, and we identify which browser attributes most contribute to this risk. Overall, we show the important role of user demographics in the ongoing work that intends to assess fingerprinting risks and improve user privacy, with findings to inform future privacy enhancing browser developments. The dataset and data collection tool we openly publish can be used to further study research questions not addressed in this work. View details
    Preview abstract The Privacy Sandbox initiative from Google includes APIs for enabling privacy-preserving advertising functionalities as part of the effort to limit third-party cookies. In particular, the Private Aggregation API (PAA) and the Attribution Reporting API (ARA) can be used for ad measurement while providing different guardrails for safeguarding user privacy, including a framework for satisfying differential privacy (DP). In this work, we provide an abstract model for analyzing the privacy of these APIs and show that they satisfy a formal DP guarantee under certain assumptions. Our analysis handles the case where both the queries and database can change interactively based on previous responses from the API. View details
    Beyond Touchscreens: Dynamic and Multimodal Interaction Needs
    Melissa Barnhart Wantland
    Mai Kobori
    Universal Access in Human-Computer Interaction, Springer-Verlag (2025)
    Preview abstract Today’s smartphone interactions are typically designed with one primary preset, accompanied by customization settings that can be manually adjusted. To promote the creation of contextually aware experiences, researchers have highlighted the factors that influence mobile device usage in the ability-based design framework. This paper expands upon existing frameworks and contributes to an empirical understanding of smartphone accessibility. Through a 10-day longitudinal diary study and video interview with 24 individuals who do and do not identify as having a disability, the research also illustrates the reactions of reattempt, adaptation, and avoidance, which were used in response to a lack of smartphone accessibility. Despite experiencing scenarios where accessibility settings could be leveraged, 20 out of 24 participants did not use accessibility settings on their smartphone. A total of 12 out of 24 participants tried accessibility settings on their smartphones, however identifying accessibility was not for them. This work highlights the need to shift current design practices to better serve the accessibility community. View details
    Faster electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Alec White
    Rolando Somma
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    arXiv (2025) (to appear)
    Preview abstract We discover that many interesting electronic structure Hamiltonians have a compact and close-to-frustration-free sum-of-squares representation with a small energy gap. We show that this gap enables spectrum amplification in estimating ground state energies, which improves the cost scaling of previous approaches from the block-encoding normalization factor $\lambda$ to just $\sqrt{\lambda E_{\text{gap}}}$. For any constant-degree polynomial basis of fermionic operators, a sum-of-squares representation with optimal gap can be efficiently computed using semi-definite programming. Although the gap can be made arbitrarily small with an exponential-size basis, we find that the degree-$2$ spin-free basis in combination with approximating two-body interactions by a new Double-Factorized (DF) generalization of Tensor-Hyper-Contraction (THC) gives an excellent balance of gap, $\lambda$, and block-encoding costs. For classically-hard FeMoco complexes -- candidate applications for first useful quantum advantage -- this combination improves the Toffoli gates cost of the first estimates with DF [Phys. Rev. Research 3, 033055] or THC [PRX Quantum 2, 030305] by over two orders of magnitude. https://drive.google.com/file/d/1hw4zFv_X0GeMpE4et6SS9gAUM9My98iJ/view?usp=sharing View details
    Mastering Multiple-Expert Routing: Realizable H-Consistency and Strong Guarantees for Learning to Defer
    Anqi Mao
    Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
    Preview abstract The problem of learning to defer with multiple experts consists of optimally assigning input instances to experts, balancing the trade-off between their accuracy and computational cost. This is a critical challenge in natural language generation, but also in other fields such as image processing, and medical diagnostics. Recent studies have proposed surrogate loss functions to optimize deferral, but challenges remain in ensuring their consistency properties. This paper introduces novel surrogate loss functions and efficient algorithms with strong theoretical learning guarantees. We address open questions regarding realizable $H$-consistency, $H$-consistency bounds, and Bayes-consistency for both single-stage (jointly learning predictor and deferral function) and two-stage (learning only the deferral function with a fixed expert) learning scenarios. For single-stage deferral, we introduce a family of new realizable $H$-consistent surrogate losses and further prove $H$-consistency for a selected member. For two-stage deferral, we derive new surrogate losses that achieve realizable $H$-consistency, $H$-consistency bounds, and Bayes-consistency for the two-expert scenario and, under natural assumptions, multiple-expert scenario. Additionally, we provide enhanced theoretical guarantees under low-noise assumptions for both scenarios. Finally, we report the results of experiments using our proposed surrogate losses, comparing their performance against existing baselines. View details
    PreFix: Optimizing the Performance of Heap-Intensive Applications
    Chaitanya Mamatha Ananda
    Rajiv Gupta
    Han Shen
    CGO 2025: International Symposium on Code Generation and Optimization, Las Vegas, NV, USA (to appear)
    Preview abstract Analyses of heap-intensive applications show that a small fraction of heap objects account for the majority of heap accesses and data cache misses. Prior works like HDS and HALO have shown that allocating hot objects in separate memory regions can improve spatial locality leading to better application performance. However, these techniques are constrained in two primary ways, limiting their gains. First, these techniques have Imperfect Separation, polluting the hot memory region with several cold objects. Second, reordering of objects across allocations is not possible as the original object allocation order is preserved. This paper presents a novel technique that achieves near perfect separation of hot objects via a new context mechanism that efficiently identifies hot objects with high precision. This technique, named PreFix, is based upon Preallocating memory for a Fixed small number of hot objects. The program, guided by profiles, is instrumented to compute context information derived from dynamic object identifiers, that precisely identifies hot object allocations that are then placed at predetermined locations in the preallocated memory. The preallocated memory region for hot objects provides the flexibility to reorder objects across allocations and allows colocation of objects that are part of a hot data stream (HDS), improving spatial locality. The runtime overhead of identifying hot objects is not significant as this optimization is only focused on a small number of static hot allocation sites and dynamic hot objects. While there is an increase in the program’s memory foot-print, it is manageable and can be controlled by limiting the size of the preallocated memory. In addition, PreFix incorporates an object recycling optimization that reuses the same preallocated space to store different objects whose lifetimes are not expected to overlap. Our experiments with 13 heap-intensive applications yields reductions in execution times ranging from 2.77% to 74%. On average PreFix reduces execution time by 21.7% compared to 7.3% by HDS and 14% by HALO. This is due to PreFix’s precision in hot object identification, hot object colocation, and low runtime overhead. View details
    REGEN: A Dataset and Benchmarks with Natural Language Critiques and Narratives
    Kun Su
    Krishna Sayana
    Hubert Pham
    James Pine
    Yuri Vasilevski
    Raghavendra Vasudeva
    Liam Hebert
    Ambarish Jash
    Anushya Subbiah
    Sukhdeep Sodhi
    (2025)
    Preview abstract This paper introduces a novel dataset REGEN (Reviews Enhanced with GEnerative Narratives), designed to benchmark the conversational capabilities of recommender Large Language Models (LLMs), addressing the limitations of existing datasets that primarily focus on sequential item prediction. REGEN extends the Amazon Product Reviews dataset by inpainting two key natural language features: (1) user critiques, representing user "steering" queries that lead to the selection of a subsequent item, and (2) narratives, rich textual outputs associated with each recommended item taking into account prior context. The narratives include product endorsements, purchase explanations, and summaries of user preferences. Further, we establish an end-to-end modeling benchmark for the task of conversational recommendation, where models are trained to generate both recommendations and corresponding narratives conditioned on user history (items and critiques). For this joint task, we introduce a modeling framework LUMEN (LLM-based Unified Multi-task Model with Critiques, Recommendations, and Narratives) which uses an LLM as a backbone for critiquing, retrieval and generation. We also evaluate the dataset's quality using standard auto-rating techniques and benchmark it by training both traditional and LLM-based recommender models. Our results demonstrate that incorporating critiques enhances recommendation quality by enabling the recommender to learn language understanding and integrate it with recommendation signals. Furthermore, LLMs trained on our dataset effectively generate both recommendations and contextual narratives, achieving performance comparable to state-of-the-art recommenders and language models. View details
    Small Models, Big Results: Achieving Superior Intent Extraction through Decomposition
    Danielle Cohen
    Yoni Halpern
    Noam Kahlon
    Joel Oren
    Omri Berkovitch
    Sapir Caduri
    Ido Dagan
    Tal Efros
    2025
    Preview abstract Understanding user intents from UI interaction trajectories remains a challenging, yet crucial, frontier in intelligent agent development. While massive, datacenter-based, multi-modal large language models (MLLMs) possess greater capacity to handle the complexities of such sequences, smaller models which can run on-device to provide a privacy-preserving, low-cost, and low-latency user experience, struggle with accurate intent inference. We address these limitations by introducing a novel decomposed approach: first, we perform structured interaction summarization, capturing key information from each user action. Second, we perform intent extraction using a fine-tuned model operating on the aggregated summaries. This method improves intent understanding in resource-constrained models, even surpassing the base performance of large MLLMs. View details
    Preview abstract Estimating Origin-Destination (OD) travel demand is vital for effective urban planning and traffic management. Developing universally applicable OD estimation methodologies is significantly challenged by the pervasive scarcity of high-fidelity traffic data and the difficulty in obtaining city-specific prior OD estimates (or seed ODs), which are often prerequisite for traditional approaches. Our proposed method directly estimates OD travel demand by systematically leveraging aggregated, anonymized statistics from Google Maps Traffic Trends, obviating the need for conventional census or city-provided OD data. The OD demand is estimated by formulating a single-level, one-dimensional, continuous nonlinear optimization problem with nonlinear equality and bound constraints to replicate highway path travel times. The method achieves efficiency and scalability by employing a differentiable analytical macroscopic network model. This model by design is computationally lightweight, distinguished by its parsimonious parameterization that requires minimal calibration effort and its capacity for instantaneous evaluation. These attributes ensure the method's broad applicability and practical utility across diverse cities globally. Using segment sensor counts from Los Angeles and San Diego highway networks, we validate our proposed approach, demonstrating a two-thirds to three-quarters improvement in the fit to segment count data over a baseline. Beyond validation, we establish the method's scalability and robust performance in replicating path travel times across diverse highway networks, including Seattle, Orlando, Denver, Philadelphia, and Boston. In these expanded evaluations, our method not only aligns with simulation-based benchmarks but also achieves an average 13% improvement in it's ability to fit travel time data compared to the baseline during afternoon peak hours. View details
    Preview abstract We introduce a novel online learning framework that unifies and generalizes pre-established models, such as delayed and corrupted feedback, to encompass adversarial environments where action feedback evolves over time. In this setting, the observed loss is arbitrary and may not correlate with the true loss incurred, with each round updating previous observations adversarially. We propose regret minimization algorithms for both the full-information and bandit settings, with regret bounds quantified by the average feedback accuracy relative to the true loss. Our algorithms match the known regret bounds across many special cases, while also introducing previously unknown bounds. View details
      ×
      Design a Mobile Site
      View Site in Mobile | Classic
      Share by: