Excel Charts and World Clock

Excel Charts and World Clock

数学

エクセルで数学 2018/7/21 このページに反映



2006.05.01
円周率 1000000 桁 . π=3. 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 ...

まだまだ続きます、いや終わらない。

だから、これ(Π)を約数ではなく概数(分数、式)('approximations')で表す工夫例が
ここ などに見られます。

それで、僕は考えていきたい。

円周率Πを使用したお馴染みの
I. 円周2Πr
II. 面積Πr二乗
それぞれを、半径1の円に内接する正多角形n角形の一つの三角形の、
辺(円に対する弦)と円の中心点を頂点とする角度αの関係:
n→∞、α→0 かつ sin(Π÷180×α÷n)→0
ここでα=1とすると、
n→∞、sin(Π÷180÷(n÷360))(式I)→0


以上のもとで、
・・・

ここで、これをパソコンとか電卓のかわりに時々使えば便利かなというものを今見つけました。
ブログを書きながらこれから頼りにしていくかもしれません。それは
Google Help: Search Features の中の"Calculator"。
ここで、試しに黄金比にでてくる三角形の検証に使おう。
△ABC において∠C=90' a=X b=√X c=1 
ここでは √X2乗+1=X2乗 ⇔ X2乗-X-1=0 
問題1)Xを求める 2)∠B=72'なのか

√3:' sqrt(3) = 1.73205081 '
(1+√5)/2:' sqrt((1+sqrt(5))/2)^2=1.61803399 ' (X (c))
ちなみに、このX「1.61803399」を黄金比と呼ぶ:' the golden ratio = 1.61803399
√((1+√5)/2):' sqrt((1+sqrt(5))/2) =1.27201965 ' (√X (b))
√((1+√5)/2)/(1+√5)/2:' sqrt((1+sqrt(5))/2)/sqrt((1+sqrt(5))/2)^2=0.786153617 ' (b/c)
' sin51.8275'=0.786153617 ' sin 51.8275 '
' sin 60'=0.866025404 ' sin 60.0000'
' sqrt(3)/2=0.866025404 ' √3/2=sin 60.0000'

・・・

sin 0°=0 
sin 1°=0.0174524064 ;Calculatorには "sin (Pi/180)"とタイプ
sin 0.1°=0.00174532837 ;Calculatorには "sin (Pi/1800)"とタイプ
sin 0.01°=0.000174532924 ;Calculatorには "sin (Pi/18000)"とタイプ

I. 円周

半径1の円に内接する、
360角形の辺の長さ合計:0.0174524064 X 360 =6.28286632
X 1/2 = 3.14 1 43316
3600角形の辺の長さ合計:0.00174532837 X 3600 =6.28318212
X 1/2 = 3.1415 9 106
36000角形の辺の長さ合計:0.000174532924 X 36000 =6.28318528
X 1/2 = 3.141592 6 4
ここから先は、また時間のある時にしますが、

36000角形の内角の和は: 180°X (36000-2)
だから一つの頂点の内角:180°X (36000-2)/36000 ≒180°
よって、ここまでの誤差:2/36000 ≒ 0.00005555555
Calculatorでは "5.55555556 X 10マイナス5乗"となる。

36000角形の、円に対する誤差は:  5/9 X 10マイナス6乗

仮説:半径1の円と、それに内接する正n角形(「n角形」と呼ぶ)において、
n角形の辺の長さの円周に対する誤差、
    すなわち円周率誤差は:
 円周率誤差2/n; n→∞  2/n→ 0
マイナス側から

・・・

II. 面積  36000角形において、
・式Iを使用、また一つの三角形の面積は<底辺×高さ ×(1 / 2) >だから、

sin((Pi / 180) / (36 000 / 360)) * (1 / 2) * 36 000 = 3.141592 6 4


・または、もっと難しく考えないで、一つの3角形の面積×36000(角形)だから、
sin((Pi / 180) / 100) * 0.5 * 36 000 = 3.141592 6 4
・・・

radian(pi):' radian(pi) = 3.14159265 '

こう考え出すと、グーグルの世界に来ているのでしょうか。びっくりします。
でもグーグルの由来を聞いて、またびっくりします。それは、' Googol 'から来ているそうです。

Googol=1X10の100乗

Prose in Pi




読むだけでわかる数学再入門(上)
読むだけでわかる数学再入門(上)


1対1対応の演習/数学II(新課程版)
1対1対応の演習/数学II
(新課程版)

1対1対応の演習/図形の基盤
1対1対応の演習/
図形の基盤

基礎数学の123(ワンツースリー)
基礎数学の123
(ワンツースリー)
なっとくの高校数学(図形編)
なっとくの高校数学
(図形編)
三角関数と指数関数・対数関数
三角関数と
指数関数・対数関数
やりなおし高校の数学
やりなおし
高校の数学
カリスマ先生の<図形数学
カリスマ先生の
図形数学
黄金比はすべてを美しくするか?
黄金比はすべてを美し
くするか?
五角形の世界(2)
五角形の世界(2)
数学がわかる楽しみ
数学がわかる楽しみ
イラスト・図解算数・数学をやりなおす本
チャート式体系数学1代数編(中学1・2年生用)
チャート式体系数学2 代数編(中学2.3年生用)
チャート式体系数学1幾何編(中学1・2年生用)
チャート式体系数学2 幾何編(中学2.3年生用)


はてなブックマーク - タグ algorithm
How to use the Google calculator
Golden Ratio
e




物理 化学

大学受験







© Rakuten Group, Inc.
X
Mobilize your Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: