Clean Technology, Vol.28, No.1, 79-93, March, 2022
첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계
Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design
E-mail:
초록
본 연구에서는 Part I에서 제안한 첨단 전자산업 폐수처리시설 특화 Water Digital Twin모델인 e-ASM을 이용하여 랩-파일럿 처 리장 데이터를 바탕으로 모델 보정(Calibration), 유입 성상에 따른 제거 효율, 유출수 예측 및 최적 공법 선정을 수행하였다. 첨단 전자산업 폐수처리시설의 특화 모델링을 위하여, 민감도 분석을 통해 e-ASM 모델의 정합성과 상관성이 높은 동역학적 파라미 터를 선정하였고, 다중반응표면분석법 (Multiple response surface methodology, MRS)을 이용하여 동역학적 파라미터를 보정하 였다. e-ASM 모델의 보정 결과, Lab-scale, Pilot-scale 단위의 실험데이터와 90% 이상의 높은 정합성을 보였다. 그리고 4가지 유 기폐수 처리처리공법인 MLE, A2/O, 4-stage MLE-MBR, Bardenpho-MBR을 제안한 Water Digital Twin으로 구현하여 유입 폐수 의 성상별 운전조건에 따라 제거효율을 분석하였으며, Bardenpho-MBR이 C/N ratio 변화에서도 안정적으로 COD (Chemical oxygen demand)를 90% 이상 제거하며 높은 총 질소 제거 효율을 보였다. 그리고 유입 폐수의 조건별 Bardenpho-MBR공정의 수리학적 체류시간(Hydraulic retention time, HRT)이 3일 이상일 때 1,800 mg L-1의 고농도 TMAH 폐수를 98% 이상 제거할 수 있음을 확인할 수 있었다. 이와 같이, 본 연구에서 개발한 e-ASM은 전자산업 제조시설별, 유입 폐수의 성상별 특화 모델링을 통 해 높은 정합성을 가진 전자산업 폐수처리공정의 Water Digital Twin를 구현할 수 있고, 최적운전, Water AI, 최적가용기법 선정 등의 응용 가능성을 바탕으로 지속 가능한 첨단전자 산업을 위해 활용될 수 있을 것으로 사료된다.
In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes—MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR—were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 TMAH influent could be 98% removed when the HRT o f the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.
  1. Oh SE, Chae HB, Choo TH, J. Korean Soc. Environ. Technol. , 17(3), 181 (2016)
  2. MICHELIS ID, RENZO AD, SARAULLO M, VEGLIO F, DEStech Trans. Environ. Energy Earth Sci. , 27 (2017)
  3. Wu YJ, Whang LM, Huang SJ, Yang YF, Lei CN, Cheng SS, “Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater,” 1085-1094 (2008).
  4. Fukushima T, Whang LM, Chen PC, Putri DW, Chang MY, Wu YJ, Lee YC, “Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicromium and Thiobacillusspp.,” No. 141, 131-137 (2013).
  5. Cheng H, Liu C, Lei Y, Chiu Y, Mangalidan J, Wu C, Wu Y, Whang L, Chemosphere , 236, 124291 (2019)
  6. Raghuvanshi S, Gupta S, J. Biotechnol. Biomater. (13), 1 (2013)
  7. National Institute of Environmental Research, “Guidelines on Best Available Techniques for Environmental Pollution Prevention and Integrated Management in Semiconductor Manufacturing Industry,” 177-261 (2020).
  8. Wu YJ, Irmayani L, Setiyawan AA, Whang LM, Chemosphere , 258, 1 (2020)
  9. Hockenbury MR, Grady CPL, J. Water Pollut. Control Fed. , 49(5), 768 (1977)
  10. Kang CK, “Technological consideration on the domestic production of high quality recycled semiconductor wastewater for industrial purpose,” Ph.D. Dissertation, Youngnam university (2017).
  11. Weon KJ, “A Study on the Pre-treatment of Biological Processes for High-concentration Semiconductor Cleaning Wastewater,” Ph.D. Dissertation, Chungbuk National University, 55 (2018).
  12. Park MS, Yoo CK, J Korean Soc Environ Eng. , 2 (2020)
  13. Liu B, Yoshinaga K, Wub J, Chen W, Terashima M, Goel R, Pangallo D, Yasui H, Biochem. Eng. J. , 114, 42 (2016)
  14. Chen TK, Chen JN, Ni CH, Lin GT, Chang CY, Water Sci. Technol. , 48(8), 195 (2003)
  15. Wu YJ, Whang LM, Huang SJ, Yang YF, Lei CN, Cheng SS, Water Sci. Technol. , 58(5), 1085 (2008)
  16. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Nature , 453, 396 (2008)
  17. Son JR, Lee KJ, Kang S, Kim G, Yang GM, Mo CY, Seo Y, J. Biosystens Eng.
  18. Lee SJ, Yoo CK, Choi SK, Chun HD, Lee IB, Korean Chem. Eng. Res. , 44(6), 579 (2006)
  19. Lee GH, Hwangbo SH, Yoo CK, Korean Chem. Eng. Res. , 56(4), 479 (2018)
  20. Kwon JB, Lee JS, Lee SH, Jeon CH, Kim KJ, J. The Korean Operations Research Management Science Society , 39 (2004)
  21. Jeong IJ, Knowledge Management Review(KMR) , 21(1), 27 (2020)
  22. Kim MH, Yoo CK, 2008 Int. Conf. Control. Autom. Syst. ICCAS 2008 , 2604 (2008)
  23. Kim MH, Rao AS, Yoo CK, Ind. Eng. Chem. Res. , 48(13), 6363 (2009)
  24. Oh TS, Kim MJ, Lim JJ, Kim YS, Yoo CK, Korean Chem. Eng. Res. , 49(2), 187 (2011)
  25. Phan HV, Hai FI, Ren, Zhang, Kang, Jinguo, Price WE, Nghiem LD, Fac. Eng. Inf. Sci. - Pap. Part A. (4972), 1 (2016)
  26. Fu Z, Yang F, An Y, Xue Y, Biochem. Eng. J. , 43, 191 (2009)
  27. Lee HS, Kim KI, Heo J, Kim KJ, Kim JS, Lee JJ, Jung IH, J. KSWW & J. Korean Soc. Water Environ , 1 (2009)
  28. Whang LM, Wu YJ, Lee YC, Chen HW, Fukushima T, Chang MY, Cheng SS, Hsu SF, Chang CH, Bioresour. Technol. , 122, 70 (2012)
Create a Mobile Website
View Site in Mobile | Classic
Share by: