- 1.35.0 (latest)
- 1.34.0
- 1.33.0
- 1.32.1
- 1.31.0
- 1.30.0
- 1.26.0
- 1.23.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.1
- 1.12.0
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.39.0
- 0.38.0
- 0.37.1
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.2
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.13.0
- 0.12.0
- 0.11.1
- 0.10.0
Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class IndexDatapoint.
A datapoint of Index.
Generated from protobuf message google.cloud.aiplatform.v1.IndexDatapoint
Methods
__construct
Constructor.
data
array
Optional. Data for populating the Message object.
↳ datapoint_id
string
Required. Unique identifier of the datapoint.
↳ feature_vector
array
Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
↳ restricts
array< Google\Cloud\AIPlatform\V1\IndexDatapoint\Restriction
>
Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
↳ crowding_tag
Google\Cloud\AIPlatform\V1\IndexDatapoint\CrowdingTag
Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
getDatapointId
Required. Unique identifier of the datapoint.
Generated from protobuf field string datapoint_id = 1 [(.google.api.field_behavior) = REQUIRED];
string
setDatapointId
Required. Unique identifier of the datapoint.
Generated from protobuf field string datapoint_id = 1 [(.google.api.field_behavior) = REQUIRED];
var
string
$this
getFeatureVector
Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
Generated from protobuf field repeated float feature_vector = 2 [(.google.api.field_behavior) = REQUIRED];
Google\Protobuf\Internal\RepeatedField
setFeatureVector
Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
Generated from protobuf field repeated float feature_vector = 2 [(.google.api.field_behavior) = REQUIRED];
var
float[]
$this
getRestricts
Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching.
See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
Generated from protobuf field repeated .google.cloud.aiplatform.v1.IndexDatapoint.Restriction restricts = 4 [(.google.api.field_behavior) = OPTIONAL];
Google\Protobuf\Internal\RepeatedField
setRestricts
Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching.
See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
Generated from protobuf field repeated .google.cloud.aiplatform.v1.IndexDatapoint.Restriction restricts = 4 [(.google.api.field_behavior) = OPTIONAL];
$this
getCrowdingTag
Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
Generated from protobuf field .google.cloud.aiplatform.v1.IndexDatapoint.CrowdingTag crowding_tag = 5 [(.google.api.field_behavior) = OPTIONAL];
hasCrowdingTag
clearCrowdingTag
setCrowdingTag
Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
Generated from protobuf field .google.cloud.aiplatform.v1.IndexDatapoint.CrowdingTag crowding_tag = 5 [(.google.api.field_behavior) = OPTIONAL];
$this