Reference documentation and code samples for the Google Cloud Datalabeling V1beta1 Client class EvaluationJobConfig.
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
Generated from protobuf message google.cloud.datalabeling.v1beta1.EvaluationJobConfig
Namespace
Google \ Cloud \ DataLabeling \ V1beta1Methods
__construct
Constructor.
data
array
Optional. Data for populating the Message object.
↳ image_classification_config
Google\Cloud\DataLabeling\V1beta1\ImageClassificationConfig
Specify this field if your model version performs image classification or general classification. annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
↳ bounding_poly_config
Google\Cloud\DataLabeling\V1beta1\BoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
.
↳ text_classification_config
Google\Cloud\DataLabeling\V1beta1\TextClassificationConfig
Specify this field if your model version performs text classification. annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
↳ input_config
Google\Cloud\DataLabeling\V1beta1\InputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataType
must be one of IMAGE
, TEXT
, or GENERAL_DATA
. * annotationType
must be one of IMAGE_CLASSIFICATION_ANNOTATION
, TEXT_CLASSIFICATION_ANNOTATION
, GENERAL_CLASSIFICATION_ANNOTATION
, or IMAGE_BOUNDING_BOX_ANNOTATION
(image object detection). * If your machine learning model performs classification, you must specify classificationMetadata.isMultiLabel
. * You must specify bigquerySource
(not gcsSource
).
↳ evaluation_config
Google\Cloud\DataLabeling\V1beta1\EvaluationConfig
Required. Details for calculating evaluation metrics and creating Evaulations
. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptions
field within this configuration. Otherwise, provide an empty object for this configuration.
↳ human_annotation_config
Google\Cloud\DataLabeling\V1beta1\HumanAnnotationConfig
Optional. Details for human annotation of your data. If you set labelMissingGroundTruth
to true
for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction
resource before you can specify this field. Provide the name of the instruction resource in the instruction
field within this configuration.
↳ bigquery_import_keys
array| Google\Protobuf\Internal\MapField
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key
: the data key for prediction input. You must provide either this key or reference_json_key
. * reference_json_key
: the data reference key for prediction input. You must provide either this key or data_json_key
. * label_json_key
: the label key for prediction output. Required. * label_score_json_key
: the score key for prediction output. Required. * bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys
.
↳ example_count
int
Required. The maximum number of predictions to sample and save to BigQuery during each evaluation interval
. This limit overrides example_sample_percentage
: even if the service has not sampled enough predictions to fulfill example_sample_perecentage
during an interval, it stops sampling predictions when it meets this limit.
↳ example_sample_percentage
float
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval . For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
↳ evaluation_job_alert_config
Google\Cloud\DataLabeling\V1beta1\EvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
getImageClassificationConfig
Specify this field if your model version performs image classification or general classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
hasImageClassificationConfig
setImageClassificationConfig
Specify this field if your model version performs image classification or general classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
$this
getBoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection).
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
.
hasBoundingPolyConfig
setBoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection).
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
.
$this
getTextClassificationConfig
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
hasTextClassificationConfig
setTextClassificationConfig
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet
. allowMultiLabel
in this configuration must match classificationMetadata.isMultiLabel
in input_config
.
$this
getInputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
-
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
. -
annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection). - If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
hasInputConfig
clearInputConfig
setInputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
-
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
. -
annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection). - If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
$this
getEvaluationConfig
Required. Details for calculating evaluation metrics and creating Evaulations
. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
hasEvaluationConfig
clearEvaluationConfig
setEvaluationConfig
Required. Details for calculating evaluation metrics and creating Evaulations
. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
$this
getHumanAnnotationConfig
Optional. Details for human annotation of your data. If you set labelMissingGroundTruth
to true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction
resource before you can
specify this field. Provide the name of the instruction resource in the instruction
field within this configuration.
hasHumanAnnotationConfig
clearHumanAnnotationConfig
setHumanAnnotationConfig
Optional. Details for human annotation of your data. If you set labelMissingGroundTruth
to true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction
resource before you can
specify this field. Provide the name of the instruction resource in the instruction
field within this configuration.
$this
getBigqueryImportKeys
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
-
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
. -
reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
. -
label_json_key
: the label key for prediction output. Required. -
label_score_json_key
: the score key for prediction output. Required. -
bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys .
setBigqueryImportKeys
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
-
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
. -
reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
. -
label_json_key
: the label key for prediction output. Required. -
label_score_json_key
: the score key for prediction output. Required. -
bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys .
$this
getExampleCount
Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval
. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
int
setExampleCount
Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval
. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
var
int
$this
getExampleSamplePercentage
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval . For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
float
setExampleSamplePercentage
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval . For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
var
float
$this
getEvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
hasEvaluationJobAlertConfig
clearEvaluationJobAlertConfig
setEvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
$this
getHumanAnnotationRequestConfig
string