Package Methods (0.3.0)

Summary of entries of Methods for langchain-google-alloydb-pg.

langchain_google_alloydb_pg.alloydb_chat_message_history._aget_messages

  _aget_messages 
 ( 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 session_id 
 : 
 str 
 , 
 table_name 
 : 
 str 
 , 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ] 
 

Retrieve the messages from AlloyDB.

See more: langchain_google_alloydb_pg.alloydb_chat_message_history._aget_messages

langchain_google_alloydb_pg.alloydb_engine._get_iam_principal_email

  _get_iam_principal_email 
 ( 
 credentials 
 : 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ) 
 - 
> str 
 

Get email address associated with current authenticated IAM principal.

See more: langchain_google_alloydb_pg.alloydb_engine._get_iam_principal_email

langchain_google_alloydb_pg.alloydb_vectorstore.cosine_similarity

  cosine_similarity 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 List 
 [ 
 float 
 ]], 
 typing 
 . 
 List 
 [ 
 numpy 
 . 
 ndarray 
 ], 
 numpy 
 . 
 ndarray 
 ], 
 Y 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 List 
 [ 
 float 
 ]], 
 typing 
 . 
 List 
 [ 
 numpy 
 . 
 ndarray 
 ], 
 numpy 
 . 
 ndarray 
 ], 
 ) 
 - 
> numpy 
 . 
 ndarray 
 

Row-wise cosine similarity between two equal-width matrices.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.cosine_similarity

langchain_google_alloydb_pg.alloydb_vectorstore.maximal_marginal_relevance

  maximal_marginal_relevance 
 ( 
 query_embedding 
 : 
 numpy 
 . 
 ndarray 
 , 
 embedding_list 
 : 
 list 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 int 
 ] 
 

Calculate maximal marginal relevance.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.maximal_marginal_relevance

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.aadd_message

  aadd_message 
 ( 
 message 
 : 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.aadd_messages

  aadd_messages 
 ( 
 messages 
 : 
 typing 
 . 
 Sequence 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ], 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.aclear

  aclear 
 () 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.add_message

  add_message 
 ( 
 message 
 : 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.add_messages

  add_messages 
 ( 
 messages 
 : 
 typing 
 . 
 Sequence 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ], 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_chat_message_history.AlloyDBChatMessageHistory.clear

  clear 
 () 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine._aexecute

  _aexecute 
 ( 
 query 
 : 
 str 
 , 
 params 
 : 
 typing 
 . 
 Optional 
 [ 
 dict 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine._aexecute_outside_tx

  _aexecute_outside_tx 
 ( 
 query 
 : 
 str 
 ) 
 - 
> None 
 

langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine._aload_table_schema

  _aload_table_schema 
 ( 
 table_name 
 : 
 str 
 ) 
 - 
> sqlalchemy 
 . 
 sql 
 . 
 schema 
 . 
 Table 
 

Load table schema from existing table in PgSQL database.

See more: langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine._aload_table_schema

langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine.ainit_document_table

  ainit_document_table 
 ( 
 table_name 
 : 
 str 
 , 
 content_column 
 : 
 str 
 = 
 "page_content" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of langchain documents.

See more: langchain_google_alloydb_pg.alloydb_engine.AlloyDBEngine.ainit_document_table

langchain_google_alloydb_pg.alloydb_loader.AlloyDBDocumentSaver.aadd_documents

  aadd_documents 
 ( 
 docs 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Save documents in the DocumentSaver table.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBDocumentSaver.aadd_documents

langchain_google_alloydb_pg.alloydb_loader.AlloyDBDocumentSaver.adelete

  adelete 
 ( 
 docs 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBDocumentSaver.adelete

langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.alazy_load

  alazy_load 
 () 
 - 
> typing 
 . 
 AsyncIterator 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load AlloyDB data into Document objects lazily.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.alazy_load

langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.aload

  aload 
 () 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load AlloyDB data into Document objects.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.aload

langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.create

  create 
 ( 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 query 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 table_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 content_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 format 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 formatter 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Callable 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_loader 
 . 
 AlloyDBLoader 
 

Constructor for AlloyDBLoader .

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.create

langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.lazy_load

  lazy_load 
 () 
 - 
> typing 
 . 
 Iterator 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load AlloyDB data into Document objects lazily.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.lazy_load

langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.load

  load 
 () 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load AlloyDB data into Document objects.

See more: langchain_google_alloydb_pg.alloydb_loader.AlloyDBLoader.load

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.aadd_documents

  aadd_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.aadd_documents

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.aadd_texts

  aadd_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.aadd_texts

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.add_documents

  add_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.add_documents

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.add_texts

  add_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 str 
 ] 
 

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.add_texts

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.adelete

  adelete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

Delete by vector ID or other criteria.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.adelete

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.afrom_documents

  afrom_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 table_name 
 : 
 str 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_vectorstore 
 . 
 AlloyDBVectorStore 
 

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.afrom_documents

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.afrom_texts

  afrom_texts 
 ( 
 texts 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 table_name 
 : 
 str 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_vectorstore 
 . 
 AlloyDBVectorStore 
 

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.afrom_texts

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search

  amax_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search_by_vector

  amax_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.asimilarity_search

  asimilarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.asimilarity_search_by_vector

  asimilarity_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.asimilarity_search_with_score

  asimilarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Run similarity search with distance asynchronously.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.asimilarity_search_with_score

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.create

  create 
 ( 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 table_name 
 : 
 str 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_alloydb_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_alloydb_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_vectorstore 
 . 
 AlloyDBVectorStore 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.delete

  delete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

Delete by vector ID or other criteria.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.delete

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.from_documents

  from_documents 
 ( 
 documents 
 : 
 typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 table_name 
 : 
 str 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_vectorstore 
 . 
 AlloyDBVectorStore 
 

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.from_documents

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.from_texts

  from_texts 
 ( 
 texts 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_alloydb_pg 
 . 
 alloydb_engine 
 . 
 AlloyDBEngine 
 , 
 table_name 
 : 
 str 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 typing 
 . 
 List 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 List 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_alloydb_pg 
 . 
 alloydb_vectorstore 
 . 
 AlloyDBVectorStore 
 

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.from_texts

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.max_marginal_relevance_search

  max_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.max_marginal_relevance_search

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_by_vector

  max_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_by_vector

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.similarity_search

  similarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.similarity_search_by_vector

  similarity_search_by_vector 
 ( 
 embedding 
 : 
 typing 
 . 
 List 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

langchain_google_alloydb_pg.alloydb_vectorstore.AlloyDBVectorStore.similarity_search_with_score

  similarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

langchain_google_alloydb_pg.indexes.DistanceStrategy._generate_next_value_

  _generate_next_value_ 
 ( 
 start 
 , 
 count 
 , 
 last_values 
 ) 
 

Generate the next value when not given.

See more: langchain_google_alloydb_pg.indexes.DistanceStrategy. generate_next_value

Create a Mobile Website
View Site in Mobile | Classic
Share by: