Package Methods (0.12.1)

Summary of entries of Methods for langchain-google-cloud-sql-pg.

langchain_google_cloud_sql_pg.engine._get_iam_principal_email

  _get_iam_principal_email 
 ( 
 credentials 
 : 
 google 
 . 
 auth 
 . 
 credentials 
 . 
 Credentials 
 ) 
 - 
> str 
 

Get email address associated with current authenticated IAM principal.

See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory

  PostgresChatMessageHistory 
 ( 
 key 
 : 
 object 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 history 
 : 
 langchain_google_cloud_sql_pg 
 . 
 async_chat_message_history 
 . 
 AsyncPostgresChatMessageHistory 
 , 
 ) 
 

PostgresChatMessageHistory constructor.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message

  aadd_message 
 ( 
 message 
 : 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ) 
 - 
> None 
 

Append the message to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

  aadd_messages 
 ( 
 messages 
 : 
 typing 
 . 
 Sequence 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ], 
 ) 
 - 
> None 
 

Append a list of messages to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear

  aclear 
 () 
 - 
> None 
 

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message

  add_message 
 ( 
 message 
 : 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ) 
 - 
> None 
 

Append the message to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

  add_messages 
 ( 
 messages 
 : 
 typing 
 . 
 Sequence 
 [ 
 langchain_core 
 . 
 messages 
 . 
 base 
 . 
 BaseMessage 
 ], 
 ) 
 - 
> None 
 

Append a list of messages to the record in PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear

  clear 
 () 
 - 
> None 
 

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create

  create 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 session_id 
 : 
 str 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 chat_message_history 
 . 
 PostgresChatMessageHistory 
 

Create a new PostgresChatMessageHistory instance.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync

  create_sync 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 session_id 
 : 
 str 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 chat_message_history 
 . 
 PostgresChatMessageHistory 
 

Create a new PostgresChatMessageHistory instance.

See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync

langchain_google_cloud_sql_pg.engine.Column.__post_init__

  __post_init__ 
 () 
 

Check if initialization parameters are valid.

See more: langchain_google_cloud_sql_pg.engine.Column. post_init

langchain_google_cloud_sql_pg.engine.PostgresEngine

  PostgresEngine 
 ( 
 key 
 : 
 object 
 , 
 pool 
 : 
 sqlalchemy 
 . 
 ext 
 . 
 asyncio 
 . 
 engine 
 . 
 AsyncEngine 
 , 
 loop 
 : 
 typing 
 . 
 Optional 
 [ 
 asyncio 
 . 
 events 
 . 
 AbstractEventLoop 
 ], 
 thread 
 : 
 typing 
 . 
 Optional 
 [ 
 threading 
 . 
 Thread 
 ], 
 ) 
 

PostgresEngine constructor.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine

langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table

  _ainit_chat_history_table 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 ) 
 - 
> None 
 

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table

  _ainit_vectorstore_table 
 ( 
 table_name 
 : 
 str 
 , 
 vector_size 
 : 
 int 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 id_column 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 "langchain_id" 
 , 
 overwrite_existing 
 : 
 bool 
 = 
 False 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table

langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

  _aload_table_schema 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 ) 
 - 
> sqlalchemy 
 . 
 sql 
 . 
 schema 
 . 
 Table 
 

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

langchain_google_cloud_sql_pg.engine.PostgresEngine._create

  _create 
 ( 
 project_id 
 : 
 str 
 , 
 region 
 : 
 str 
 , 
 instance 
 : 
 str 
 , 
 database 
 : 
 str 
 , 
 ip_type 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 google 
 . 
 cloud 
 . 
 sql 
 . 
 connector 
 . 
 enums 
 . 
 IPTypes 
 ], 
 user 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 password 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 loop 
 : 
 typing 
 . 
 Optional 
 [ 
 asyncio 
 . 
 events 
 . 
 AbstractEventLoop 
 ] 
 = 
 None 
 , 
 thread 
 : 
 typing 
 . 
 Optional 
 [ 
 threading 
 . 
 Thread 
 ] 
 = 
 None 
 , 
 quota_project 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 iam_account_email 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 engine_args 
 : 
 typing 
 . 
 Mapping 
 = 
 {}, 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 

Create a PostgresEngine instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._create

langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async

  _run_as_async 
 ( 
 coro 
 : 
 typing 
 . 
 Awaitable 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 T 
 ], 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 T 
 

Run an async coroutine asynchronously.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async

langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync

  _run_as_sync 
 ( 
 coro 
 : 
 typing 
 . 
 Awaitable 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 T 
 ], 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 T 
 

Run an async coroutine synchronously.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync

langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance

  afrom_instance 
 ( 
 project_id 
 : 
 str 
 , 
 region 
 : 
 str 
 , 
 instance 
 : 
 str 
 , 
 database 
 : 
 str 
 , 
 user 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 password 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ip_type 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 google 
 . 
 cloud 
 . 
 sql 
 . 
 connector 
 . 
 enums 
 . 
 IPTypes 
 ] 
 = 
 IPTypes 
 . 
 PUBLIC 
 , 
 quota_project 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 iam_account_email 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 engine_args 
 : 
 typing 
 . 
 Mapping 
 = 
 {}, 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 

Create a PostgresEngine from a Postgres instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table

  ainit_chat_history_table 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 ) 
 - 
> None 
 

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

  ainit_document_table 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "page_content" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

  ainit_vectorstore_table 
 ( 
 table_name 
 : 
 str 
 , 
 vector_size 
 : 
 int 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 id_column 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 "langchain_id" 
 , 
 overwrite_existing 
 : 
 bool 
 = 
 False 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.close

  close 
 () 
 - 
> None 
 

Dispose of connection pool.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.close

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine

  from_engine 
 ( 
 engine 
 : 
 sqlalchemy 
 . 
 ext 
 . 
 asyncio 
 . 
 engine 
 . 
 AsyncEngine 
 , 
 loop 
 : 
 typing 
 . 
 Optional 
 [ 
 asyncio 
 . 
 events 
 . 
 AbstractEventLoop 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 

Create an PostgresEngine instance from an AsyncEngine.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args

  from_engine_args 
 ( 
 url 
 : 
 str 
 | 
 sqlalchemy 
 . 
 engine 
 . 
 url 
 . 
 URL 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 

Create an PostgresEngine instance from arguments.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args

langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance

  from_instance 
 ( 
 project_id 
 : 
 str 
 , 
 region 
 : 
 str 
 , 
 instance 
 : 
 str 
 , 
 database 
 : 
 str 
 , 
 user 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 password 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ip_type 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 google 
 . 
 cloud 
 . 
 sql 
 . 
 connector 
 . 
 enums 
 . 
 IPTypes 
 ] 
 = 
 IPTypes 
 . 
 PUBLIC 
 , 
 quota_project 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 iam_account_email 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 engine_args 
 : 
 typing 
 . 
 Mapping 
 = 
 {}, 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 

Create a PostgresEngine from a Postgres instance.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table

  init_chat_history_table 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 ) 
 - 
> None 
 

Create a Cloud SQL table to store chat history.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table

  init_document_table 
 ( 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "page_content" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table

  init_vectorstore_table 
 ( 
 table_name 
 : 
 str 
 , 
 vector_size 
 : 
 int 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 id_column 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 Column 
 ] 
 = 
 "langchain_id" 
 , 
 overwrite_existing 
 : 
 bool 
 = 
 False 
 , 
 store_metadata 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> None 
 

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table

langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options

  index_options 
 () 
 - 
> str 
 

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options

langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_

  _generate_next_value_ 
 ( 
 start 
 , 
 count 
 , 
 last_values 
 ) 
 

Generate the next value when not given.

See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy. generate_next_value

langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options

  index_options 
 () 
 - 
> str 
 

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options

langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string

  to_string 
 () 
 

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string

langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options

  index_options 
 () 
 - 
> str 
 

Set index query options for vector store initialization.

See more: langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options

langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string

  to_string 
 () 
 

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string

langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string

  to_string 
 () 
 - 
> str 
 

Convert index attributes to string.

See more: langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver

  PostgresDocumentSaver 
 ( 
 key 
 : 
 object 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 saver 
 : 
 langchain_google_cloud_sql_pg 
 . 
 async_loader 
 . 
 AsyncPostgresDocumentSaver 
 , 
 ) 
 

PostgresDocumentSaver constructor.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

  aadd_documents 
 ( 
 docs 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Save documents in the DocumentSaver table.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.add_documents

  add_documents 
 ( 
 docs 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Save documents in the DocumentSaver table.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.add_documents

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

  adelete 
 ( 
 docs 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create

  create 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "page_content" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 "langchain_metadata" 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 loader 
 . 
 PostgresDocumentSaver 
 

Create an PostgresDocumentSaver instance.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create_sync

  create_sync 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "page_content" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 loader 
 . 
 PostgresDocumentSaver 
 

Create an PostgresDocumentSaver instance.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create_sync

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.delete

  delete 
 ( 
 docs 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ]) 
 - 
> None 
 

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.delete

langchain_google_cloud_sql_pg.loader.PostgresLoader

  PostgresLoader 
 ( 
 key 
 : 
 object 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 loader 
 : 
 langchain_google_cloud_sql_pg 
 . 
 async_loader 
 . 
 AsyncPostgresLoader 
 , 
 ) 
 

PostgresLoader constructor.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader

langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

  alazy_load 
 () 
 - 
> typing 
 . 
 AsyncIterator 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

  aload 
 () 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

langchain_google_cloud_sql_pg.loader.PostgresLoader.create

  create 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 query 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 table_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 format 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 formatter 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Callable 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 loader 
 . 
 PostgresLoader 
 

Create a new PostgresLoader instance.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create

langchain_google_cloud_sql_pg.loader.PostgresLoader.create_sync

  create_sync 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 query 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 table_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 format 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 formatter 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Callable 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 loader 
 . 
 PostgresLoader 
 

Create a new PostgresLoader instance.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create_sync

langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

  lazy_load 
 () 
 - 
> typing 
 . 
 Iterator 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.load

  load 
 () 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.load

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

  PostgresVectorStore 
 ( 
 key 
 : 
 object 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 vs 
 : 
 langchain_google_cloud_sql_pg 
 . 
 async_vectorstore 
 . 
 AsyncPostgresVectorStore 
 , 
 ) 
 

PostgresVectorStore constructor.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore._select_relevance_score_fn

  _select_relevance_score_fn 
 () 
 - 
> typing 
 . 
 Callable 
 [[ 
 float 
 ], 
 float 
 ] 
 

Select a relevance function based on distance strategy.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore._select_relevance_score_fn

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents

  aadd_documents 
 ( 
 documents 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 str 
 ] 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts

  aadd_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 str 
 ] 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aapply_vector_index

  aapply_vector_index 
 ( 
 index 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 BaseIndex 
 , 
 name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 concurrently 
 : 
 bool 
 = 
 False 
 , 
 ) 
 - 
> None 
 

Create an index on the vector store table.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aapply_vector_index

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

  add_documents 
 ( 
 documents 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 str 
 ] 
 

Embed documents and add to the table.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts

  add_texts 
 ( 
 texts 
 : 
 typing 
 . 
 Iterable 
 [ 
 str 
 ], 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 str 
 ] 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete

  adelete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adrop_vector_index

  adrop_vector_index 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

  afrom_documents 
 ( 
 documents 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create an PostgresVectorStore instance from documents.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

  afrom_texts 
 ( 
 texts 
 : 
 list 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create an PostgresVectorStore instance from texts.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.ais_valid_index

  ais_valid_index 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bool 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

  amax_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

  amax_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_with_score_by_vector

  amax_marginal_relevance_search_with_score_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_with_score_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.apply_vector_index

  apply_vector_index 
 ( 
 index 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 BaseIndex 
 , 
 name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 concurrently 
 : 
 bool 
 = 
 False 
 , 
 ) 
 - 
> None 
 

Create an index on the vector store table.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.apply_vector_index

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.areindex

  areindex 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search

  asimilarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected by similarity search on query.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector

  asimilarity_search_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected by vector similarity search.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

  asimilarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected by similarity search on query.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score_by_vector

  asimilarity_search_with_score_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected by vector similarity search.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

  create 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create a new PostgresVectorStore instance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create_sync

  create_sync 
 ( 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 embedding_service 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create a new PostgresVectorStore instance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create_sync

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete

  delete 
 ( 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.drop_vector_index

  drop_vector_index 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

  from_documents 
 ( 
 documents 
 : 
 list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create an PostgresVectorStore instance from documents.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

  from_texts 
 ( 
 texts 
 : 
 list 
 [ 
 str 
 ], 
 embedding 
 : 
 langchain_core 
 . 
 embeddings 
 . 
 embeddings 
 . 
 Embeddings 
 , 
 engine 
 : 
 langchain_google_cloud_sql_pg 
 . 
 engine 
 . 
 PostgresEngine 
 , 
 table_name 
 : 
 str 
 , 
 schema_name 
 : 
 str 
 = 
 "public" 
 , 
 metadatas 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 dict 
 ]] 
 = 
 None 
 , 
 ids 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 ] 
 = 
 None 
 , 
 content_column 
 : 
 str 
 = 
 "content" 
 , 
 embedding_column 
 : 
 str 
 = 
 "embedding" 
 , 
 metadata_columns 
 : 
 list 
 [ 
 str 
 ] 
 = 
 [], 
 ignore_metadata_columns 
 : 
 typing 
 . 
 Optional 
 [ 
 list 
 [ 
 str 
 ]] 
 = 
 None 
 , 
 id_column 
 : 
 str 
 = 
 "langchain_id" 
 , 
 metadata_json_column 
 : 
 str 
 = 
 "langchain_metadata" 
 , 
 distance_strategy 
 : 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 DistanceStrategy 
 = 
 DistanceStrategy 
 . 
 COSINE_DISTANCE 
 , 
 k 
 : 
 int 
 = 
 4 
 , 
 fetch_k 
 : 
 int 
 = 
 20 
 , 
 lambda_mult 
 : 
 float 
 = 
 0.5 
 , 
 index_query_options 
 : 
 typing 
 . 
 Optional 
 [ 
 langchain_google_cloud_sql_pg 
 . 
 indexes 
 . 
 QueryOptions 
 ] 
 = 
 None 
 , 
 ) 
 - 
> langchain_google_cloud_sql_pg 
 . 
 vectorstore 
 . 
 PostgresVectorStore 
 

Create an PostgresVectorStore instance from texts.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.is_valid_index

  is_valid_index 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bool 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

  max_marginal_relevance_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

  max_marginal_relevance_search_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_with_score_by_vector

  max_marginal_relevance_search_with_score_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 fetch_k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 lambda_mult 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_with_score_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.reindex

  reindex 
 ( 
 index_name 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search

  similarity_search 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected by similarity search on query.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector

  similarity_search_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 ] 
 

Return docs selected by vector similarity search.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score

  similarity_search_with_score 
 ( 
 query 
 : 
 str 
 , 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected by similarity search on query.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score_by_vector

  similarity_search_with_score_by_vector 
 ( 
 embedding 
 : 
 list 
 [ 
 float 
 ], 
 k 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 filter 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 ** 
 kwargs 
 : 
 typing 
 . 
 Any 
 ) 
 - 
> list 
 [ 
 tuple 
 [ 
 langchain_core 
 . 
 documents 
 . 
 base 
 . 
 Document 
 , 
 float 
 ]] 
 

Return docs and distance scores selected by similarity search on vector.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score_by_vector

Create a Mobile Website
View Site in Mobile | Classic
Share by: