Streaming insert with complex data types

Insert data of various BigQuery-supported types into a table.

Code sample

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries . For more information, see the BigQuery Go API reference documentation .

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries .

  import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "time" 
  
 "cloud.google.com/go/bigquery" 
  
 "cloud.google.com/go/civil" 
 ) 
 // ComplexType represents a complex row item 
 type 
  
 ComplexType 
  
 struct 
  
 { 
  
 Name 
  
 string 
  
 `bigquery:"name"` 
  
 Age 
  
 int 
  
 `bigquery:"age"` 
  
 School 
  
 [] 
 byte 
  
 `bigquery:"school"` 
  
 Location 
  
 bigquery 
 . 
  NullGeography 
 
  
 `bigquery:"location"` 
  
 Measurements 
  
 [] 
 float64 
  
 `bigquery:"measurements"` 
  
 DatesTime 
  
 DatesTime 
  
 `bigquery:"datesTime"` 
 } 
 // DatesTime shows different date/time representation 
 type 
  
 DatesTime 
  
 struct 
  
 { 
  
 Day 
  
 civil 
 . 
  Date 
 
  
 `bigquery:"day"` 
  
 FirstTime 
  
 civil 
 . 
  DateTime 
 
  
 `bigquery:"firstTime"` 
  
 SecondTime 
  
 civil 
 . 
  Time 
 
  
 `bigquery:"secondTime"` 
  
 ThirdTime 
  
 time 
 . 
  Time 
 
  
 `bigquery:"thirdTime"` 
 } 
 // insertingDataTypes demonstrates inserting data into a table using the streaming insert mechanism. 
 func 
  
 insertingDataTypes 
 ( 
 projectID 
 , 
  
 datasetID 
 , 
  
 tableID 
  
 string 
 ) 
  
 error 
  
 { 
  
 // projectID := "my-project-id" 
  
 // datasetID := "mydataset" 
  
 // tableID := "mytable" 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 bigquery 
 . 
 NewClient 
 ( 
 ctx 
 , 
  
 projectID 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "bigquery.NewClient: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
 Close 
 () 
  
 // Manually defining schema 
  
 schema 
  
 := 
  
 bigquery 
 . 
  Schema 
 
 { 
  
 { 
 Name 
 : 
  
 "name" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  StringFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "age" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  IntegerFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "school" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  BytesFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "location" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  GeographyFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "measurements" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  FloatFieldType 
 
 , 
  
 Repeated 
 : 
  
 true 
 }, 
  
 { 
 Name 
 : 
  
 "datesTime" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  RecordFieldType 
 
 , 
  
 Schema 
 : 
  
 bigquery 
 . 
  Schema 
 
 { 
  
 { 
 Name 
 : 
  
 "day" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  DateFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "firstTime" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  DateTimeFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "secondTime" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  TimeFieldType 
 
 }, 
  
 { 
 Name 
 : 
  
 "thirdTime" 
 , 
  
 Type 
 : 
  
 bigquery 
 . 
  TimestampFieldType 
 
 }, 
  
 }}, 
  
 } 
  
 // Infer schema from struct 
  
 // schema, err := bigquery.InferSchema(ComplexType{}) 
  
 table 
  
 := 
  
 client 
 . 
 Dataset 
 ( 
 datasetID 
 ). 
 Table 
 ( 
 tableID 
 ) 
  
 err 
  
 = 
  
 table 
 . 
 Create 
 ( 
 ctx 
 , 
  
& bigquery 
 . 
  TableMetadata 
 
 { 
  
 Schema 
 : 
  
 schema 
 , 
  
 }) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "table.Create: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 day 
 , 
  
 err 
  
 := 
  
 civil 
 . 
  ParseDate 
 
 ( 
 "2019-01-12" 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "civil.ParseDate: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 firstTime 
 , 
  
 err 
  
 := 
  
 civil 
 . 
  ParseDateTime 
 
 ( 
 "2019-02-17T11:24:00.000" 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "civil.ParseDateTime: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 secondTime 
 , 
  
 err 
  
 := 
  
 civil 
 . 
  ParseTime 
 
 ( 
 "14:00:00" 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "civil.ParseTime: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 thirdTime 
 , 
  
 err 
  
 := 
  
 time 
 . 
 Parse 
 ( 
 time 
 . 
 RFC3339Nano 
 , 
  
 "2020-04-27T18:07:25.356Z" 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "time.Parse: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 row 
  
 := 
  
& ComplexType 
 { 
  
 Name 
 : 
  
 "Tom" 
 , 
  
 Age 
 : 
  
 30 
 , 
  
 School 
 : 
  
 [] 
 byte 
 ( 
 "Test University" 
 ), 
  
 Location 
 : 
  
 bigquery 
 . 
  NullGeography 
 
 { 
 GeographyVal 
 : 
  
 "POINT(1 2)" 
 , 
  
 Valid 
 : 
  
 true 
 }, 
  
 Measurements 
 : 
  
 [] 
 float64 
 { 
 50.05 
 , 
  
 100.5 
 }, 
  
 DatesTime 
 : 
  
 DatesTime 
 { 
  
 Day 
 : 
  
 day 
 , 
  
 FirstTime 
 : 
  
 firstTime 
 , 
  
 SecondTime 
 : 
  
 secondTime 
 , 
  
 ThirdTime 
 : 
  
 thirdTime 
 , 
  
 }, 
  
 } 
  
 rows 
  
 := 
  
 [] 
 * 
 ComplexType 
 { 
 row 
 } 
  
 // Uncomment to simulate insert errors. 
  
 // This example row is missing required fields. 
  
 // badRow := &ComplexType{ 
  
 // 	Name: "John", 
  
 // 	Age:  24, 
  
 // } 
  
 // rows = append(rows, badRow) 
  
 inserter 
  
 := 
  
 table 
 . 
 Inserter 
 () 
  
 err 
  
 = 
  
 inserter 
 . 
  Put 
 
 ( 
 ctx 
 , 
  
 rows 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 if 
  
 multiErr 
 , 
  
 ok 
  
 := 
  
 err 
 .( 
 bigquery 
 . 
  PutMultiError 
 
 ); 
  
 ok 
  
 { 
  
 for 
  
 _ 
 , 
  
 putErr 
  
 := 
  
 range 
  
 multiErr 
  
 { 
  
 fmt 
 . 
 Printf 
 ( 
 "failed to insert row %d with err: %v \n" 
 , 
  
 putErr 
 . 
 RowIndex 
 , 
  
 putErr 
 . 
 Error 
 ()) 
  
 } 
  
 } 
  
 return 
  
 err 
  
 } 
  
 return 
  
 nil 
 } 
 

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries . For more information, see the BigQuery Java API reference documentation .

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries .

  import 
  
 com.google.cloud.bigquery. BigQuery 
 
 ; 
 import 
  
 com.google.cloud.bigquery. BigQueryError 
 
 ; 
 import 
  
 com.google.cloud.bigquery. BigQueryException 
 
 ; 
 import 
  
 com.google.cloud.bigquery. BigQueryOptions 
 
 ; 
 import 
  
 com.google.cloud.bigquery. Field 
 
 ; 
 import 
  
 com.google.cloud.bigquery. InsertAllRequest 
 
 ; 
 import 
  
 com.google.cloud.bigquery. InsertAllResponse 
 
 ; 
 import 
  
 com.google.cloud.bigquery. Schema 
 
 ; 
 import 
  
 com.google.cloud.bigquery. StandardSQLTypeName 
 
 ; 
 import 
  
 com.google.cloud.bigquery. StandardTableDefinition 
 
 ; 
 import 
  
 com.google.cloud.bigquery. TableDefinition 
 
 ; 
 import 
  
 com.google.cloud.bigquery. TableId 
 
 ; 
 import 
  
 com.google.cloud.bigquery. TableInfo 
 
 ; 
 import 
  
 java.util.Base64 
 ; 
 import 
  
 java.util.HashMap 
 ; 
 import 
  
 java.util.List 
 ; 
 import 
  
 java.util.Map 
 ; 
 // Sample to insert data types in a table 
 public 
  
 class 
 InsertingDataTypes 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 datasetName 
  
 = 
  
 "MY_DATASET_NAME" 
 ; 
  
 String 
  
 tableName 
  
 = 
  
 "MY_TABLE_NAME" 
 ; 
  
 insertingDataTypes 
 ( 
 datasetName 
 , 
  
 tableName 
 ); 
  
 } 
  
 public 
  
 static 
  
 void 
  
 insertingDataTypes 
 ( 
 String 
  
 datasetName 
 , 
  
 String 
  
 tableName 
 ) 
  
 { 
  
 try 
  
 { 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
 BigQuery 
  
 bigquery 
  
 = 
  
 BigQueryOptions 
 . 
 getDefaultInstance 
 (). 
 getService 
 (); 
  
 // Inserting data types 
  
 Field 
  
 name 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "name" 
 , 
  
 StandardSQLTypeName 
 . 
 STRING 
 ); 
  
 Field 
  
 age 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "age" 
 , 
  
 StandardSQLTypeName 
 . 
 INT64 
 ); 
  
 Field 
  
 school 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "school" 
 , 
  
 StandardSQLTypeName 
 . 
 BYTES 
 ); 
  
 Field 
  
 location 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "location" 
 , 
  
 StandardSQLTypeName 
 . 
 GEOGRAPHY 
 ); 
  
 Field 
  
 measurements 
  
 = 
  
 Field 
 . 
 newBuilder 
 ( 
 "measurements" 
 , 
  
 StandardSQLTypeName 
 . 
 FLOAT64 
 ) 
  
 . 
 setMode 
 ( 
 Field 
 . 
 Mode 
 . 
 REPEATED 
 ) 
  
 . 
 build 
 (); 
  
 Field 
  
 day 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "day" 
 , 
  
 StandardSQLTypeName 
 . 
 DATE 
 ); 
  
 Field 
  
 firstTime 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "firstTime" 
 , 
  
 StandardSQLTypeName 
 . 
 DATETIME 
 ); 
  
 Field 
  
 secondTime 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "secondTime" 
 , 
  
 StandardSQLTypeName 
 . 
 TIME 
 ); 
  
 Field 
  
 thirdTime 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "thirdTime" 
 , 
  
 StandardSQLTypeName 
 . 
 TIMESTAMP 
 ); 
  
 Field 
  
 datesTime 
  
 = 
  
 Field 
 . 
 of 
 ( 
 "datesTime" 
 , 
  
 StandardSQLTypeName 
 . 
 STRUCT 
 , 
  
 day 
 , 
  
 firstTime 
 , 
  
 secondTime 
 , 
  
 thirdTime 
 ); 
  
 Schema 
  
 schema 
  
 = 
  
 Schema 
 . 
 of 
 ( 
 name 
 , 
  
 age 
 , 
  
 school 
 , 
  
 location 
 , 
  
 measurements 
 , 
  
 datesTime 
 ); 
  
 TableId 
  
 tableId 
  
 = 
  
 TableId 
 . 
 of 
 ( 
 datasetName 
 , 
  
 tableName 
 ); 
  
 TableDefinition 
  
 tableDefinition 
  
 = 
  
 StandardTableDefinition 
 . 
 of 
 ( 
 schema 
 ); 
  
 TableInfo 
  
 tableInfo 
  
 = 
  
 TableInfo 
 . 
 newBuilder 
 ( 
 tableId 
 , 
  
 tableDefinition 
 ). 
 build 
 (); 
  
 bigquery 
 . 
 create 
 ( 
 tableInfo 
 ); 
  
 // Inserting Sample data 
  
 Map<String 
 , 
  
 Object 
>  
 datesTimeContent 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 datesTimeContent 
 . 
 put 
 ( 
 "day" 
 , 
  
 "2019-1-12" 
 ); 
  
 datesTimeContent 
 . 
 put 
 ( 
 "firstTime" 
 , 
  
 "2019-02-17 11:24:00.000" 
 ); 
  
 datesTimeContent 
 . 
 put 
 ( 
 "secondTime" 
 , 
  
 "14:00:00" 
 ); 
  
 datesTimeContent 
 . 
 put 
 ( 
 "thirdTime" 
 , 
  
 "2020-04-27T18:07:25.356Z" 
 ); 
  
 Map<String 
 , 
  
 Object 
>  
 rowContent 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 rowContent 
 . 
 put 
 ( 
 "name" 
 , 
  
 "Tom" 
 ); 
  
 rowContent 
 . 
 put 
 ( 
 "age" 
 , 
  
 30 
 ); 
  
 rowContent 
 . 
 put 
 ( 
 "school" 
 , 
  
 Base64 
 . 
 getEncoder 
 (). 
 encodeToString 
 ( 
 "Test University" 
 . 
 getBytes 
 ())); 
  
 rowContent 
 . 
 put 
 ( 
 "location" 
 , 
  
 "POINT(1 2)" 
 ); 
  
 rowContent 
 . 
 put 
 ( 
 "measurements" 
 , 
  
 new 
  
 Float 
 [] 
  
 { 
 50.05f 
 , 
  
 100.5f 
 }); 
  
 rowContent 
 . 
 put 
 ( 
 "datesTime" 
 , 
  
 datesTimeContent 
 ); 
  
 InsertAllResponse 
  
 response 
  
 = 
  
 bigquery 
 . 
 insertAll 
 ( 
 InsertAllRequest 
 . 
 newBuilder 
 ( 
 tableId 
 ). 
 addRow 
 ( 
 rowContent 
 ). 
 build 
 ()); 
  
 if 
  
 ( 
 response 
 . 
 hasErrors 
 ()) 
  
 { 
  
 // If any of the insertions failed, this lets you inspect the errors 
  
 for 
  
 ( 
 Map 
 . 
 Entry<Long 
 , 
  
 List<BigQueryError> 
>  
 entry 
  
 : 
  
 response 
 . 
 getInsertErrors 
 (). 
 entrySet 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Response error: \n" 
  
 + 
  
 entry 
 . 
 getValue 
 ()); 
  
 } 
  
 } 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Rows successfully inserted into table" 
 ); 
  
 } 
  
 catch 
  
 ( 
 BigQueryException 
  
 e 
 ) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Insert operation not performed \n" 
  
 + 
  
 e 
 . 
 toString 
 ()); 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries . For more information, see the BigQuery Node.js API reference documentation .

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries .

  // Import the Google Cloud client library 
 const 
  
 { 
 BigQuery 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/bigquery 
' 
 ); 
 const 
  
 bigquery 
  
 = 
  
 new 
  
  BigQuery 
 
 (); 
 async 
  
 function 
  
 insertingDataTypes 
 () 
  
 { 
  
 // Inserts data of various BigQuery-supported types into a table. 
  
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
  
 // const datasetId = 'my_dataset'; 
  
 // const tableId = 'my_table'; 
  
 // Describe the schema of the table 
  
 // For more information on supported data types, see 
  
 // https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types 
  
 const 
  
 schema 
  
 = 
  
 [ 
  
 { 
  
 name 
 : 
  
 'name' 
 , 
  
 type 
 : 
  
 'STRING' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'age' 
 , 
  
 type 
 : 
  
 ' INTEGER 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'school' 
 , 
  
 type 
 : 
  
 ' BYTES 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'metadata' 
 , 
  
 type 
 : 
  
 ' JSON 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'location' 
 , 
  
 type 
 : 
  
 ' GEOGRAPHY 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'measurements' 
 , 
  
 mode 
 : 
  
 ' REPEATED 
' 
 , 
  
 type 
 : 
  
 'FLOAT' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'datesTimes' 
 , 
  
 type 
 : 
  
 ' RECORD 
' 
 , 
  
 fields 
 : 
  
 [ 
  
 { 
  
 name 
 : 
  
 'day' 
 , 
  
 type 
 : 
  
 'DATE' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'firstTime' 
 , 
  
 type 
 : 
  
 ' DATETIME 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'secondTime' 
 , 
  
 type 
 : 
  
 ' TIME 
' 
 , 
  
 }, 
  
 { 
  
 name 
 : 
  
 'thirdTime' 
 , 
  
 type 
 : 
  
 'TIMESTAMP' 
 , 
  
 }, 
  
 ], 
  
 }, 
  
 ]; 
  
 // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource 
  
 const 
  
 options 
  
 = 
  
 { 
  
 schema 
 : 
  
 schema 
 , 
  
 }; 
  
 // Create a new table in the dataset 
  
 const 
  
 [ 
 table 
 ] 
  
 = 
  
 await 
  
 bigquery 
  
 . 
 dataset 
 ( 
 datasetId 
 ) 
  
 . 
  createTable 
 
 ( 
 tableId 
 , 
  
 options 
 ); 
  
 console 
 . 
 log 
 ( 
 `Table 
 ${ 
 table 
 . 
 id 
 } 
 created.` 
 ); 
  
 // The DATE type represents a logical calendar date, independent of time zone. 
  
 // A DATE value does not represent a specific 24-hour time period. 
  
 // Rather, a given DATE value represents a different 24-hour period when 
  
 // interpreted in different time zones, and may represent a shorter or longer 
  
 // day during Daylight Savings Time transitions. 
  
 const 
  
 bqDate 
  
 = 
  
 bigquery 
 . 
  date 
 
 ( 
 '2019-1-12' 
 ); 
  
 // A DATETIME object represents a date and time, as they might be 
  
 // displayed on a calendar or clock, independent of time zone. 
  
 const 
  
 bqDatetime 
  
 = 
  
 bigquery 
 . 
  datetime 
 
 ( 
 '2019-02-17 11:24:00.000' 
 ); 
  
 // A TIME object represents a time, as might be displayed on a watch, 
  
 // independent of a specific date and timezone. 
  
 const 
  
 bqTime 
  
 = 
  
 bigquery 
 . 
 time 
 ( 
 '14:00:00' 
 ); 
  
 // A TIMESTAMP object represents an absolute point in time, 
  
 // independent of any time zone or convention such as Daylight 
  
 // Savings Time with microsecond precision. 
  
 const 
  
 bqTimestamp 
  
 = 
  
 bigquery 
 . 
 timestamp 
 ( 
 '2020-04-27T18:07:25.356Z' 
 ); 
  
 const 
  
 bqGeography 
  
 = 
  
 bigquery 
 . 
  geography 
 
 ( 
 'POINT(1 2)' 
 ); 
  
 const 
  
 schoolBuffer 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
 'Test University' 
 ); 
  
 // a JSON field needs to be converted to a string 
  
 const 
  
 metadata 
  
 = 
  
  JSON 
 
 . 
 stringify 
 ({ 
  
 owner 
 : 
  
 'John Doe' 
 , 
  
 contact 
 : 
  
 'johndoe@example.com' 
 , 
  
 }); 
  
 // Rows to be inserted into table 
  
 const 
  
 rows 
  
 = 
  
 [ 
  
 { 
  
 name 
 : 
  
 'Tom' 
 , 
  
 age 
 : 
  
 '30' 
 , 
  
 location 
 : 
  
 bqGeography 
 , 
  
 school 
 : 
  
 schoolBuffer 
 , 
  
 metadata 
 : 
  
 metadata 
 , 
  
 measurements 
 : 
  
 [ 
 50.05 
 , 
  
 100.5 
 ], 
  
 datesTimes 
 : 
  
 { 
  
 day 
 : 
  
 bqDate 
 , 
  
 firstTime 
 : 
  
 bqDatetime 
 , 
  
 secondTime 
 : 
  
 bqTime 
 , 
  
 thirdTime 
 : 
  
 bqTimestamp 
 , 
  
 }, 
  
 }, 
  
 { 
  
 name 
 : 
  
 'Ada' 
 , 
  
 age 
 : 
  
 '35' 
 , 
  
 measurements 
 : 
  
 [ 
 30.08 
 , 
  
 121.7 
 ], 
  
 }, 
  
 ]; 
  
 // Insert data into table 
  
 await 
  
 bigquery 
 . 
 dataset 
 ( 
 datasetId 
 ). 
 table 
 ( 
 tableId 
 ). 
 insert 
 ( 
 rows 
 ); 
  
 console 
 . 
 log 
 ( 
 `Inserted 
 ${ 
 rows 
 . 
 length 
 } 
 rows` 
 ); 
 } 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: