Analyzing Entity Sentiment

Entity Sentiment Analysiscombines both entity analysis and sentiment analysis and attempts to determine the sentiment (positive or negative) expressed about entities within the text. Entity sentiment is represented by numerical score and magnitude values and is determined for each mention of an entity. Those scores are then aggregated into an overall sentiment score and magnitude for an entity. For information on how to interpret the score and magnitude sentiment values included in the analysis, see Interpreting sentiment analysis values .

The following examples show how to query the analyzeEntitySentiment method. For each document, you must submit a separate request.

Analyzing Entity Sentiment

Here is an example of analyzing entity sentiment provided as a string:

Protocol

To analyze entity sentiment in a document, make a POST request to the documents:analyzeEntitySentiment REST method and provide the appropriate request body as shown in the following example.

The example uses the gcloud auth application-default print-access-token command to obtain an access token for a service account set up for the project using the Google Cloud Platform gcloud CLI . For instructions on installing the gcloud CLI, setting up a project with a service account see the Quickstart .

curl  
-X  
POST  
 \ 
  
-H  
 "Authorization: Bearer " 
 $( 
gcloud  
auth  
application-default  
print-access-token ) 
  
 \ 
  
-H  
 "Content-Type: application/json; charset=utf-8" 
  
 \ 
  
--data  
 "{ 
 'document':{ 
 'type':'PLAIN_TEXT', 
 'content':'I love R&B music. Marvin Gaye is the best. 
 \'What\'s Going On\' is one of my favorite songs. 
 It was so sad when Marvin Gaye died.' 
 }, 
 'encodingType':'UTF8' 
 }" 
  
 "https://language.googleapis.com/v1/documents:analyzeEntitySentiment" 

gcloud

Refer to the analyze-entity-sentiment command for complete details.

To perform entity sentiment analysis, use the gcloud CLI and use the --content flag to identify the content to analyze:

gcloud ml language analyze-entity-sentiment \
  --content="I love R&B music. Marvin Gaye is the best. 'What's Going On' is one of my favorite songs. It was so sad when Marvin Gaye died."

Go

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Go API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  func 
  
 analyzeEntitySentiment 
 ( 
 ctx 
  
 context 
 . 
 Context 
 , 
  
 client 
  
 * 
 language 
 . 
 Client 
 , 
  
 text 
  
 string 
 ) 
  
 ( 
 * 
 languagepb 
 . 
 AnalyzeEntitySentimentResponse 
 , 
  
 error 
 ) 
  
 { 
  
 return 
  
 client 
 . 
 AnalyzeEntitySentiment 
 ( 
 ctx 
 , 
  
& languagepb 
 . 
 AnalyzeEntitySentimentRequest 
 { 
  
 Document 
 : 
  
& languagepb 
 . 
 Document 
 { 
  
 Source 
 : 
  
& languagepb 
 . 
 Document_Content 
 { 
  
 Content 
 : 
  
 text 
 , 
  
 }, 
  
 Type 
 : 
  
 languagepb 
 . 
 Document_PLAIN_TEXT 
 , 
  
 }, 
  
 }) 
 } 
 

Java

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Java API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient 
 try 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 LanguageServiceClient 
  
 language 
  
 = 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 LanguageServiceClient 
 . 
 create 
 ()) 
  
 { 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
  
 doc 
  
 = 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
 . 
 newBuilder 
 (). 
 setContent 
 ( 
 text 
 ) 
  
 . 
 setType 
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
 . 
 Type 
 . 
 PLAIN_TEXT 
 ). 
 build 
 (); 
  
 AnalyzeEntitySentimentRequest 
  
 request 
  
 = 
  
 AnalyzeEntitySentimentRequest 
 . 
 newBuilder 
 () 
  
 . 
 setDocument 
 ( 
 doc 
 ) 
  
 . 
 setEncodingType 
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 EncodingType 
 . 
 UTF16 
 ) 
  
 . 
 build 
 (); 
  
 // Detect entity sentiments in the given string 
  
 AnalyzeEntitySentimentResponse 
  
 response 
  
 = 
  
 language 
 . 
 analyzeEntitySentiment 
 ( 
 request 
 ); 
  
 // Print the response 
  
 for 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Entity 
  
 entity 
  
 : 
  
 response 
 . 
 getEntitiesList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Entity: %s\n" 
 , 
  
 entity 
 . 
 getName 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Salience: %.3f\n" 
 , 
  
 entity 
 . 
 getSalience 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Sentiment : %s\n" 
 , 
  
 entity 
 . 
 getSentiment 
 ()); 
  
 for 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 EntityMention 
  
 mention 
  
 : 
  
 entity 
 . 
 getMentionsList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Begin offset: %d\n" 
 , 
  
 mention 
 . 
 getText 
 (). 
 getBeginOffset 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Content: %s\n" 
 , 
  
 mention 
 . 
 getText 
 (). 
 getContent 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Magnitude: %.3f\n" 
 , 
  
 mention 
 . 
 getSentiment 
 (). 
 getMagnitude 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Sentiment score : %.3f\n" 
 , 
  
 mention 
 . 
 getSentiment 
 (). 
 getScore 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Type: %s\n\n" 
 , 
  
 mention 
 . 
 getType 
 ()); 
  
 } 
  
 } 
 } 
 

Node.js

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Node.js API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Imports the Google Cloud client library 
 const 
  
 language 
  
 = 
  
 require 
 ( 
 ' @google-cloud/language 
' 
 ); 
 // Creates a client 
 const 
  
 client 
  
 = 
  
 new 
  
 language 
 . 
  LanguageServiceClient 
 
 (); 
 /** 
 * TODO(developer): Uncomment the following line to run this code. 
 */ 
 // const text = 'Your text to analyze, e.g. Hello, world!'; 
 // Prepares a document, representing the provided text 
 const 
  
 document 
  
 = 
  
 { 
  
 content 
 : 
  
 text 
 , 
  
 type 
 : 
  
 'PLAIN_TEXT' 
 , 
 }; 
 // Detects sentiment of entities in the document 
 const 
  
 [ 
 result 
 ] 
  
 = 
  
 await 
  
 client 
 . 
 analyzeEntitySentiment 
 ({ 
 document 
 }); 
 const 
  
 entities 
  
 = 
  
 result 
 . 
 entities 
 ; 
 console 
 . 
 log 
 ( 
 'Entities and sentiments:' 
 ); 
 entities 
 . 
 forEach 
 ( 
 entity 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 `  Name: 
 ${ 
 entity 
 . 
 name 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Type: 
 ${ 
 entity 
 . 
 type 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Score: 
 ${ 
 entity 
 . 
 sentiment 
 . 
 score 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Magnitude: 
 ${ 
 entity 
 . 
 sentiment 
 . 
 magnitude 
 } 
 ` 
 ); 
 }); 
 

Python

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Python API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 language_v1 
 def 
  
 sample_analyze_entity_sentiment 
 ( 
 text_content 
 ): 
  
 """ 
 Analyzing Entity Sentiment in a String 
 Args: 
 text_content The text content to analyze 
 """ 
 client 
 = 
 language_v1 
 . 
 LanguageServiceClient 
 () 
 # text_content = 'Grapes are good. Bananas are bad.' 
 # Available types: PLAIN_TEXT, HTML 
 type_ 
 = 
 language_v1 
 . 
 types 
 . 
 Document 
 . 
 Type 
 . 
 PLAIN_TEXT 
 # Optional. If not specified, the language is automatically detected. 
 # For list of supported languages: 
 # https://cloud.google.com/natural-language/docs/languages 
 language 
 = 
 "en" 
 document 
 = 
 { 
 "content" 
 : 
 text_content 
 , 
 "type_" 
 : 
 type_ 
 , 
 "language" 
 : 
 language 
 } 
 # Available values: NONE, UTF8, UTF16, UTF32 
 encoding_type 
 = 
 language_v1 
 . 
 EncodingType 
 . 
 UTF8 
 response 
 = 
 client 
 . 
  analyze_entity_sentiment 
 
 ( 
 request 
 = 
 { 
 "document" 
 : 
 document 
 , 
 "encoding_type" 
 : 
 encoding_type 
 } 
 ) 
 # Loop through entitites returned from the API 
 for 
 entity 
 in 
 response 
 . 
 entities 
 : 
 print 
 ( 
 f 
 "Representative name for the entity: 
 { 
 entity 
 . 
 name 
 } 
 " 
 ) 
 # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al 
 print 
 ( 
 f 
 "Entity type: 
 { 
 language_v1 
 . 
 Entity 
 . 
 Type 
 ( 
 entity 
 . 
 type_ 
 ) 
 . 
 name 
 } 
 " 
 ) 
 # Get the salience score associated with the entity in the [0, 1.0] range 
 print 
 ( 
 f 
 "Salience score: 
 { 
 entity 
 . 
 salience 
 } 
 " 
 ) 
 # Get the aggregate sentiment expressed for this entity in the provided document. 
 sentiment 
 = 
 entity 
 . 
 sentiment 
 print 
 ( 
 f 
 "Entity sentiment score: 
 { 
 sentiment 
 . 
 score 
 } 
 " 
 ) 
 print 
 ( 
 f 
 "Entity sentiment magnitude: 
 { 
 sentiment 
 . 
 magnitude 
 } 
 " 
 ) 
 # Loop over the metadata associated with entity. For many known entities, 
 # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid). 
 # Some entity types may have additional metadata, e.g. ADDRESS entities 
 # may have metadata for the address street_name, postal_code, et al. 
 for 
 metadata_name 
 , 
 metadata_value 
 in 
 entity 
 . 
 metadata 
 . 
 items 
 (): 
 print 
 ( 
 f 
 " 
 { 
 metadata_name 
 } 
 = 
 { 
 metadata_value 
 } 
 " 
 ) 
 # Loop over the mentions of this entity in the input document. 
 # The API currently supports proper noun mentions. 
 for 
 mention 
 in 
 entity 
 . 
 mentions 
 : 
 print 
 ( 
 f 
 "Mention text: 
 { 
 mention 
 . 
 text 
 . 
 content 
 } 
 " 
 ) 
 # Get the mention type, e.g. PROPER for proper noun 
 print 
 ( 
 "Mention type: 
 {} 
 " 
 . 
 format 
 ( 
 language_v1 
 . 
 EntityMention 
 . 
 Type 
 ( 
 mention 
 . 
 type_ 
 ) 
 . 
 name 
 ) 
 ) 
 # Get the language of the text, which will be the same as 
 # the language specified in the request or, if not specified, 
 # the automatically-detected language. 
 print 
 ( 
 f 
 "Language of the text: 
 { 
 response 
 . 
 language 
 } 
 " 
 ) 
 

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Natural Language reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Natural Language reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Natural Language reference documentation for Ruby.

Analyzing Entity Sentiment from Cloud Storage

Here is an example of analyzing entity sentiment stored in a text file on Cloud Storage:

Protocol

To analyze entity sentiment from a document stored in Cloud Storage, make a POST request to the documents:analyzeEntitySentiment REST method and provide the appropriate request body with the path to the document as shown in the following example.

curl  
-X  
POST  
 \ 
  
-H  
 "Authorization: Bearer " 
 $( 
gcloud  
auth  
application-default  
print-access-token ) 
  
 \ 
  
-H  
 "Content-Type: application/json; charset=utf-8" 
  
 \ 
  
--data  
 "{ 
 'document':{ 
 'type':'PLAIN_TEXT', 
 'gcsContentUri':'gs:// <bucket-name> 
/ <object-name> 
' 
 } 
 }" 
  
 "https://language.googleapis.com/v1/documents:analyzeEntitySentiment" 

gcloud

Refer to the analyze-entity-sentiment command for complete details.

To perform entity sentiment analysis, use the gcloud CLI and use the --content flag to identify the content to analyze:

gcloud ml language analyze-entity-sentiment \
  --content-file=gs:// <bucket-name> 
/ <object-name> 

Java

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Java API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient 
 try 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 LanguageServiceClient 
  
 language 
  
 = 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 LanguageServiceClient 
 . 
 create 
 ()) 
  
 { 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
  
 doc 
  
 = 
  
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
 . 
 newBuilder 
 (). 
 setGcsContentUri 
 ( 
 gcsUri 
 ) 
  
 . 
 setType 
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Document 
 . 
 Type 
 . 
 PLAIN_TEXT 
 ). 
 build 
 (); 
  
 AnalyzeEntitySentimentRequest 
  
 request 
  
 = 
  
 AnalyzeEntitySentimentRequest 
 . 
 newBuilder 
 () 
  
 . 
 setDocument 
 ( 
 doc 
 ) 
  
 . 
 setEncodingType 
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 EncodingType 
 . 
 UTF16 
 ) 
  
 . 
 build 
 (); 
  
 // Detect entity sentiments in the given file 
  
 AnalyzeEntitySentimentResponse 
  
 response 
  
 = 
  
 language 
 . 
 analyzeEntitySentiment 
 ( 
 request 
 ); 
  
 // Print the response 
  
 for 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 Entity 
  
 entity 
  
 : 
  
 response 
 . 
 getEntitiesList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Entity: %s\n" 
 , 
  
 entity 
 . 
 getName 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Salience: %.3f\n" 
 , 
  
 entity 
 . 
 getSalience 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Sentiment : %s\n" 
 , 
  
 entity 
 . 
 getSentiment 
 ()); 
  
 for 
  
 ( 
 com 
 . 
 google 
 . 
 cloud 
 . 
 language 
 . 
 v1 
 . 
 EntityMention 
  
 mention 
  
 : 
  
 entity 
 . 
 getMentionsList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Begin offset: %d\n" 
 , 
  
 mention 
 . 
 getText 
 (). 
 getBeginOffset 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Content: %s\n" 
 , 
  
 mention 
 . 
 getText 
 (). 
 getContent 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Magnitude: %.3f\n" 
 , 
  
 mention 
 . 
 getSentiment 
 (). 
 getMagnitude 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Sentiment score : %.3f\n" 
 , 
  
 mention 
 . 
 getSentiment 
 (). 
 getScore 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Type: %s\n\n" 
 , 
  
 mention 
 . 
 getType 
 ()); 
  
 } 
  
 } 
 } 
 

Node.js

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Node.js API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Imports the Google Cloud client library 
 const 
  
 language 
  
 = 
  
 require 
 ( 
 ' @google-cloud/language 
' 
 ); 
 // Creates a client 
 const 
  
 client 
  
 = 
  
 new 
  
 language 
 . 
  LanguageServiceClient 
 
 (); 
 /** 
 * TODO(developer): Uncomment the following lines to run this code 
 */ 
 // const bucketName = 'Your bucket name, e.g. my-bucket'; 
 // const fileName = 'Your file name, e.g. my-file.txt'; 
 // Prepares a document, representing a text file in Cloud Storage 
 const 
  
 document 
  
 = 
  
 { 
  
 gcsContentUri 
 : 
  
 `gs:// 
 ${ 
 bucketName 
 } 
 / 
 ${ 
 fileName 
 } 
 ` 
 , 
  
 type 
 : 
  
 'PLAIN_TEXT' 
 , 
 }; 
 // Detects sentiment of entities in the document 
 const 
  
 [ 
 result 
 ] 
  
 = 
  
 await 
  
 client 
 . 
 analyzeEntitySentiment 
 ({ 
 document 
 }); 
 const 
  
 entities 
  
 = 
  
 result 
 . 
 entities 
 ; 
 console 
 . 
 log 
 ( 
 'Entities and sentiments:' 
 ); 
 entities 
 . 
 forEach 
 ( 
 entity 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 `  Name: 
 ${ 
 entity 
 . 
 name 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Type: 
 ${ 
 entity 
 . 
 type 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Score: 
 ${ 
 entity 
 . 
 sentiment 
 . 
 score 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Magnitude: 
 ${ 
 entity 
 . 
 sentiment 
 . 
 magnitude 
 } 
 ` 
 ); 
 }); 
 

Python

To learn how to install and use the client library for Natural Language, see Natural Language client libraries . For more information, see the Natural Language Python API reference documentation .

To authenticate to Natural Language, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 language_v1 
 def 
  
 sample_analyze_entity_sentiment 
 ( 
 gcs_content_uri 
 ): 
  
 """ 
 Analyzing Entity Sentiment in text file stored in Cloud Storage 
 Args: 
 gcs_content_uri Google Cloud Storage URI where the file content is located. 
 e.g. gs://[Your Bucket]/[Path to File] 
 """ 
 client 
 = 
 language_v1 
 . 
 LanguageServiceClient 
 () 
 # gcs_content_uri = 'gs://cloud-samples-data/language/entity-sentiment.txt' 
 # Available types: PLAIN_TEXT, HTML 
 type_ 
 = 
 language_v1 
 . 
 Document 
 . 
 Type 
 . 
 PLAIN_TEXT 
 # Optional. If not specified, the language is automatically detected. 
 # For list of supported languages: 
 # https://cloud.google.com/natural-language/docs/languages 
 language 
 = 
 "en" 
 document 
 = 
 { 
 "gcs_content_uri" 
 : 
 gcs_content_uri 
 , 
 "type_" 
 : 
 type_ 
 , 
 "language" 
 : 
 language 
 , 
 } 
 # Available values: NONE, UTF8, UTF16, UTF32 
 encoding_type 
 = 
 language_v1 
 . 
 EncodingType 
 . 
 UTF8 
 response 
 = 
 client 
 . 
  analyze_entity_sentiment 
 
 ( 
 request 
 = 
 { 
 "document" 
 : 
 document 
 , 
 "encoding_type" 
 : 
 encoding_type 
 } 
 ) 
 # Loop through entitites returned from the API 
 for 
 entity 
 in 
 response 
 . 
 entities 
 : 
 print 
 ( 
 f 
 "Representative name for the entity: 
 { 
 entity 
 . 
 name 
 } 
 " 
 ) 
 # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al 
 print 
 ( 
 f 
 "Entity type: 
 { 
 language_v1 
 . 
 Entity 
 . 
 Type 
 ( 
 entity 
 . 
 type_ 
 ) 
 . 
 name 
 } 
 " 
 ) 
 # Get the salience score associated with the entity in the [0, 1.0] range 
 print 
 ( 
 f 
 "Salience score: 
 { 
 entity 
 . 
 salience 
 } 
 " 
 ) 
 # Get the aggregate sentiment expressed for this entity in the provided document. 
 sentiment 
 = 
 entity 
 . 
 sentiment 
 print 
 ( 
 f 
 "Entity sentiment score: 
 { 
 sentiment 
 . 
 score 
 } 
 " 
 ) 
 print 
 ( 
 f 
 "Entity sentiment magnitude: 
 { 
 sentiment 
 . 
 magnitude 
 } 
 " 
 ) 
 # Loop over the metadata associated with entity. For many known entities, 
 # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid). 
 # Some entity types may have additional metadata, e.g. ADDRESS entities 
 # may have metadata for the address street_name, postal_code, et al. 
 for 
 metadata_name 
 , 
 metadata_value 
 in 
 entity 
 . 
 metadata 
 . 
 items 
 (): 
 print 
 ( 
 f 
 " 
 { 
 metadata_name 
 } 
 = 
 { 
 metadata_value 
 } 
 " 
 ) 
 # Loop over the mentions of this entity in the input document. 
 # The API currently supports proper noun mentions. 
 for 
 mention 
 in 
 entity 
 . 
 mentions 
 : 
 print 
 ( 
 f 
 "Mention text: 
 { 
 mention 
 . 
 text 
 . 
 content 
 } 
 " 
 ) 
 # Get the mention type, e.g. PROPER for proper noun 
 print 
 ( 
 "Mention type: 
 {} 
 " 
 . 
 format 
 ( 
 language_v1 
 . 
 EntityMention 
 . 
 Type 
 ( 
 mention 
 . 
 type_ 
 ) 
 . 
 name 
 ) 
 ) 
 # Get the language of the text, which will be the same as 
 # the language specified in the request or, if not specified, 
 # the automatically-detected language. 
 print 
 ( 
 f 
 "Language of the text: 
 { 
 response 
 . 
 language 
 } 
 " 
 ) 
 

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Natural Language reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Natural Language reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Natural Language reference documentation for Ruby.

Create a Mobile Website
View Site in Mobile | Classic
Share by: