- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
DatasetServiceAsyncClient
(
*
,
credentials
:
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
,
transport
:
Union
[
str
,
google
.
cloud
.
aiplatform_v1beta1
.
services
.
dataset_service
.
transports
.
base
.
DatasetServiceTransport
]
=
'grpc_asyncio'
,
client_options
:
Optional
[
google
.
api_core
.
client_options
.
ClientOptions
]
=
None
,
client_info
:
google
.
api_core
.
gapic_v1
.
client_info
.
ClientInfo
=
< google
.
api_core
.
gapic_v1
.
client_info
.
ClientInfo
object
> )
The service that handles the CRUD of Vertex AI Dataset and its child resources.
Inheritance
builtins.object > DatasetServiceAsyncClientProperties
transport
Returns the transport used by the client instance.
Type | Description |
DatasetServiceTransport | The transport used by the client instance. |
Methods
DatasetServiceAsyncClient
DatasetServiceAsyncClient
(
*
,
credentials
:
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
,
transport
:
Union
[
str
,
google
.
cloud
.
aiplatform_v1beta1
.
services
.
dataset_service
.
transports
.
base
.
DatasetServiceTransport
]
=
'grpc_asyncio'
,
client_options
:
Optional
[
google
.
api_core
.
client_options
.
ClientOptions
]
=
None
,
client_info
:
google
.
api_core
.
gapic_v1
.
client_info
.
ClientInfo
=
< google
.
api_core
.
gapic_v1
.
client_info
.
ClientInfo
object
> )
Instantiates the dataset service client.
Name | Description |
credentials | Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. |
transport | Union[str, `.DatasetServiceTransport`]
The transport to use. If set to None, a transport is chosen automatically. |
client_options | ClientOptions
Custom options for the client. It won't take effect if a |
Type | Description |
google.auth.exceptions.MutualTlsChannelError | If mutual TLS transport creation failed for any reason. |
annotation_path
annotation_path
(
project
:
str
,
location
:
str
,
dataset
:
str
,
data_item
:
str
,
annotation
:
str
)
Returns a fully-qualified annotation string.
annotation_spec_path
annotation_spec_path
(
project
:
str
,
location
:
str
,
dataset
:
str
,
annotation_spec
:
str
)
Returns a fully-qualified annotation_spec string.
common_billing_account_path
common_billing_account_path
(
billing_account
:
str
)
Returns a fully-qualified billing_account string.
common_folder_path
common_folder_path
(
folder
:
str
)
Returns a fully-qualified folder string.
common_location_path
common_location_path
(
project
:
str
,
location
:
str
)
Returns a fully-qualified location string.
common_organization_path
common_organization_path
(
organization
:
str
)
Returns a fully-qualified organization string.
common_project_path
common_project_path
(
project
:
str
)
Returns a fully-qualified project string.
create_dataset
create_dataset
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
CreateDatasetRequest
,
dict
]]
=
None
,
*
,
parent
:
Optional
[
str
]
=
None
,
dataset
:
Optional
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset
.
Dataset
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Creates a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_create_dataset():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
dataset = aiplatform_v1beta1.Dataset()
dataset.display_name = "display_name_value"
dataset.metadata_schema_uri = "metadata_schema_uri_value"
dataset.metadata.null_value = "NULL_VALUE"
request = aiplatform_v1beta1.CreateDatasetRequest(
parent="parent_value",
dataset=dataset,
)
# Make the request
operation = client.create_dataset(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.CreateDatasetRequest
, dict]
The request object. Request message for DatasetService.CreateDataset . |
parent | `str`
Required. The resource name of the Location to create the Dataset in. Format: |
dataset | Dataset
Required. The Dataset to create. This corresponds to the |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be Dataset A collection of DataItems and Annotations on them. |
data_item_path
data_item_path
(
project
:
str
,
location
:
str
,
dataset
:
str
,
data_item
:
str
)
Returns a fully-qualified data_item string.
dataset_path
dataset_path
(
project
:
str
,
location
:
str
,
dataset
:
str
)
Returns a fully-qualified dataset string.
delete_dataset
delete_dataset
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
DeleteDatasetRequest
,
dict
]]
=
None
,
*
,
name
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Deletes a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_delete_dataset():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.DeleteDatasetRequest(
name="name_value",
)
# Make the request
operation = client.delete_dataset(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.DeleteDatasetRequest
, dict]
The request object. Request message for DatasetService.DeleteDataset . |
name | `str`
Required. The resource name of the Dataset to delete. Format: |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. |
export_data
export_data
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
ExportDataRequest
,
dict
]]
=
None
,
*
,
name
:
Optional
[
str
]
=
None
,
export_config
:
Optional
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset
.
ExportDataConfig
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Exports data from a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_export_data():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
export_config = aiplatform_v1beta1.ExportDataConfig()
export_config.gcs_destination.output_uri_prefix = "output_uri_prefix_value"
request = aiplatform_v1beta1.ExportDataRequest(
name="name_value",
export_config=export_config,
)
# Make the request
operation = client.export_data(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.ExportDataRequest
, dict]
The request object. Request message for DatasetService.ExportData . |
name | `str`
Required. The name of the Dataset resource. Format: |
export_config | ExportDataConfig
Required. The desired output location. This corresponds to the |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be ExportDataResponse Response message for DatasetService.ExportData . |
from_service_account_file
from_service_account_file
(
filename
:
str
,
*
args
,
**
kwargs
)
Creates an instance of this client using the provided credentials file.
Name | Description |
filename | str
The path to the service account private key json file. |
Type | Description |
---|---|
DatasetServiceAsyncClient | The constructed client. |
from_service_account_info
from_service_account_info
(
info
:
dict
,
*
args
,
**
kwargs
)
Creates an instance of this client using the provided credentials info.
Name | Description |
info | dict
The service account private key info. |
Type | Description |
---|---|
DatasetServiceAsyncClient | The constructed client. |
from_service_account_json
from_service_account_json
(
filename
:
str
,
*
args
,
**
kwargs
)
Creates an instance of this client using the provided credentials file.
Name | Description |
filename | str
The path to the service account private key json file. |
Type | Description |
---|---|
DatasetServiceAsyncClient | The constructed client. |
get_annotation_spec
get_annotation_spec
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
GetAnnotationSpecRequest
,
dict
]]
=
None
,
*
,
name
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Gets an AnnotationSpec.
from google.cloud import aiplatform_v1beta1
def sample_get_annotation_spec():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.GetAnnotationSpecRequest(
name="name_value",
)
# Make the request
response = client.get_annotation_spec(request=request)
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.GetAnnotationSpecRequest
, dict]
The request object. Request message for DatasetService.GetAnnotationSpec . |
name | `str`
Required. The name of the AnnotationSpec resource. Format: |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.types.AnnotationSpec | Identifies a concept with which DataItems may be annotated with. |
get_dataset
get_dataset
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
GetDatasetRequest
,
dict
]]
=
None
,
*
,
name
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Gets a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_get_dataset():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.GetDatasetRequest(
name="name_value",
)
# Make the request
response = client.get_dataset(request=request)
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.GetDatasetRequest
, dict]
The request object. Request message for DatasetService.GetDataset . |
name | `str`
Required. The name of the Dataset resource. This corresponds to the |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.types.Dataset | A collection of DataItems and Annotations on them. |
get_mtls_endpoint_and_cert_source
get_mtls_endpoint_and_cert_source
(
client_options
:
Optional
[
google
.
api_core
.
client_options
.
ClientOptions
]
=
None
,
)
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order:
(1) if GOOGLE_API_USE_CLIENT_CERTIFICATE
environment variable is not "true", the
client cert source is None.
(2) if client_options.client_cert_source
is provided, use the provided one; if the
default client cert source exists, use the default one; otherwise the client cert
source is None.
The API endpoint is determined in the following order:
(1) if client_options.api_endpoint
if provided, use the provided one.
(2) if GOOGLE_API_USE_CLIENT_CERTIFICATE
environment variable is "always", use the
default mTLS endpoint; if the environment variabel is "never", use the default API
endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114 .
Name | Description |
client_options | google.api_core.client_options.ClientOptions
Custom options for the client. Only the |
Type | Description |
---|---|
google.auth.exceptions.MutualTLSChannelError | If any errors happen. |
Type | Description |
Tuple[str, Callable[[], Tuple[bytes, bytes]]] | returns the API endpoint and the client cert source to use. |
get_transport_class
get_transport_class
()
Returns an appropriate transport class.
import_data
import_data
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
ImportDataRequest
,
dict
]]
=
None
,
*
,
name
:
Optional
[
str
]
=
None
,
import_configs
:
Optional
[
Sequence
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset
.
ImportDataConfig
]]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Imports data into a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_import_data():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
import_configs = aiplatform_v1beta1.ImportDataConfig()
import_configs.gcs_source.uris = ['uris_value_1', 'uris_value_2']
import_configs.import_schema_uri = "import_schema_uri_value"
request = aiplatform_v1beta1.ImportDataRequest(
name="name_value",
import_configs=import_configs,
)
# Make the request
operation = client.import_data(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.ImportDataRequest
, dict]
The request object. Request message for DatasetService.ImportData . |
name | `str`
Required. The name of the Dataset resource. Format: |
import_configs | :class:`Sequence[ google.cloud.aiplatform_v1beta1.types.ImportDataConfig
]`
Required. The desired input locations. The contents of all input locations will be imported in one batch. This corresponds to the |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be ImportDataResponse Response message for DatasetService.ImportData . |
list_annotations
list_annotations
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
ListAnnotationsRequest
,
dict
]]
=
None
,
*
,
parent
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Lists Annotations belongs to a dataitem
from google.cloud import aiplatform_v1beta1
def sample_list_annotations():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.ListAnnotationsRequest(
parent="parent_value",
)
# Make the request
page_result = client.list_annotations(request=request)
# Handle the response
for response in page_result:
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.ListAnnotationsRequest
, dict]
The request object. Request message for DatasetService.ListAnnotations . |
parent | `str`
Required. The resource name of the DataItem to list Annotations from. Format: |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.services.dataset_service.pagers.ListAnnotationsAsyncPager | Response message for DatasetService.ListAnnotations . Iterating over this object will yield results and resolve additional pages automatically. |
list_data_items
list_data_items
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
ListDataItemsRequest
,
dict
]]
=
None
,
*
,
parent
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Lists DataItems in a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_list_data_items():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.ListDataItemsRequest(
parent="parent_value",
)
# Make the request
page_result = client.list_data_items(request=request)
# Handle the response
for response in page_result:
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.ListDataItemsRequest
, dict]
The request object. Request message for DatasetService.ListDataItems . |
parent | `str`
Required. The resource name of the Dataset to list DataItems from. Format: |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.services.dataset_service.pagers.ListDataItemsAsyncPager | Response message for DatasetService.ListDataItems . Iterating over this object will yield results and resolve additional pages automatically. |
list_datasets
list_datasets
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
ListDatasetsRequest
,
dict
]]
=
None
,
*
,
parent
:
Optional
[
str
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Lists Datasets in a Location.
from google.cloud import aiplatform_v1beta1
def sample_list_datasets():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.ListDatasetsRequest(
parent="parent_value",
)
# Make the request
page_result = client.list_datasets(request=request)
# Handle the response
for response in page_result:
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.ListDatasetsRequest
, dict]
The request object. Request message for DatasetService.ListDatasets . |
parent | `str`
Required. The name of the Dataset's parent resource. Format: |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.services.dataset_service.pagers.ListDatasetsAsyncPager | Response message for DatasetService.ListDatasets . Iterating over this object will yield results and resolve additional pages automatically. |
parse_annotation_path
parse_annotation_path
(
path
:
str
)
Parses a annotation path into its component segments.
parse_annotation_spec_path
parse_annotation_spec_path
(
path
:
str
)
Parses a annotation_spec path into its component segments.
parse_common_billing_account_path
parse_common_billing_account_path
(
path
:
str
)
Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path
(
path
:
str
)
Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path
(
path
:
str
)
Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path
(
path
:
str
)
Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path
(
path
:
str
)
Parse a project path into its component segments.
parse_data_item_path
parse_data_item_path
(
path
:
str
)
Parses a data_item path into its component segments.
parse_dataset_path
parse_dataset_path
(
path
:
str
)
Parses a dataset path into its component segments.
update_dataset
update_dataset
(
request
:
Optional
[
Union
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset_service
.
UpdateDatasetRequest
,
dict
]]
=
None
,
*
,
dataset
:
Optional
[
google
.
cloud
.
aiplatform_v1beta1
.
types
.
dataset
.
Dataset
]
=
None
,
update_mask
:
Optional
[
google
.
protobuf
.
field_mask_pb2
.
FieldMask
]
=
None
,
retry
:
Union
[
google
.
api_core
.
retry
.
Retry
,
google
.
api_core
.
gapic_v1
.
method
.
_MethodDefault
]
=
< _MethodDefault
.
_DEFAULT_VALUE
:
< object
object
>> ,
timeout
:
Optional
[
float
]
=
None
,
metadata
:
Sequence
[
Tuple
[
str
,
str
]]
=
())
Updates a Dataset.
from google.cloud import aiplatform_v1beta1
def sample_update_dataset():
# Create a client
client = aiplatform_v1beta1.DatasetServiceClient()
# Initialize request argument(s)
dataset = aiplatform_v1beta1.Dataset()
dataset.display_name = "display_name_value"
dataset.metadata_schema_uri = "metadata_schema_uri_value"
dataset.metadata.null_value = "NULL_VALUE"
request = aiplatform_v1beta1.UpdateDatasetRequest(
dataset=dataset,
)
# Make the request
response = client.update_dataset(request=request)
# Handle the response
print(response)
Name | Description |
request | Union[ google.cloud.aiplatform_v1beta1.types.UpdateDatasetRequest
, dict]
The request object. Request message for DatasetService.UpdateDataset . |
dataset | Dataset
Required. The Dataset which replaces the resource on the server. This corresponds to the |
update_mask | `google.protobuf.field_mask_pb2.FieldMask`
Required. The update mask applies to the resource. For the |
retry | google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout | float
The timeout for this request. |
metadata | Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.types.Dataset | A collection of DataItems and Annotations on them. |