Changelog

1.16.1 (2022-08-02)

Features

  • Add google.ClassificationMetrics, google.RegressionMetrics, and google.Forecasting Metrics ( #1549 ) ( 3526b3e )

  • added support for conditional parameters in hyperparameter tuning ( #1544 ) ( 744cc38 )

  • SDK support for model monitoring ( #1249 ) ( 18c88d1 )

  • support case insensitive match on search facets ( #1523 ) ( cb4d405 )

  • Vertex Vizier support in SDK. ( #1434 ) ( b63b3ba )

Bug Fixes

  • Correct docstring in Dataset classes ( #1553 ) ( caebb47 )

Miscellaneous Chores

1.16.0 (2022-07-27)

Features

  • Add metadata SDK sample for delete method. ( #1530 ) ( 46aa9b5 )

  • Add metadata SDK samples for list artifact and list execution ( #1514 ) ( c0d01f1 )

  • Add Metadata SDK support and samples for get method ( #1516 ) ( d442248 )

  • Add samples for Metadata context list, get, and create ( #1525 ) ( d913e1d )

  • Change the Metadata SDK _Context class to an external class ( #1519 ) ( 95b107c )

  • Refactor schema classes to subclass from _Resource ( #1536 ) ( 93002e8 )

  • Support custom containers in CustomJob.from_local_script ( #1483 ) ( be0b7e1 )

  • Vertex AI Prediction Custom Prediction Routine ( 34bbd0a )

Bug Fixes

  • Fixed getting the output GCS bucket in PipelineJob.submit ( #1542 ) ( 69d6c7d )

  • Pass the PipelineJob credentials to create_gcs_bucket_for_pipeline_artifacts_if_it_does_not_exist ( #1537 ) ( b53e2b5 )

1.15.1 (2022-07-18)

Features

  • add get_associated_experiment method to pipeline_jobs ( #1476 ) ( e9f2c3c )

  • Add sample for create artifact and execution using the Metadata SDK. ( #1462 ) ( 1fc7dd9 )

  • Add support for start_execution in MLMD SDK. ( #1465 ) ( 298958f )

  • Add support for Vertex Tables Q2 regions ( #1498 ) ( 1b16f90 )

  • Added the PipelineJob.from_pipeline_func method ( #1415 ) ( 6ef05de )

Bug Fixes

  • deps:require google-api-core>=1.32.0,>=2.8.0 ( #1512 ) ( 6d09dee )

  • Unbreak aiplatform.Experiment.create ( #1509 ) ( 558c141 )

Miscellaneous Chores

1.15.0 (2022-06-29)

Features

  • add default_skew_threshold to TrainingPredictionSkewDetectionConfig in aiplatform v1beta1, v1 model_monitoring.proto ( #1411 ) ( 7a8e3be )

  • add model_monitoring_config to BatchPredictionJob in aiplatform v1beta1 batch_prediction_job.proto ( #1450 ) ( d35df58 )

  • add model_version_id to BatchPredictionJob in aiplatform v1 batch_prediction_job.proto ( #1453 ) ( 9ef057a )

  • add model_version_id to UploadModelResponse in aiplatform v1 model_service.proto ( #1442 ) ( 1c198f1 )

  • Add PrivateEndpoint class and HTTP methods ( #1033 ) ( 425a32f )

  • add support for accepting an Artifact Registry URL in pipeline_job ( #1405 ) ( e138cfd )

  • add support for failure_policy in PipelineJob ( #1452 ) ( d0968ea )

  • Improved metadata artifact and execution creation using python / SDK ( #1430 ) ( 6c4374f )

  • support dataset update ( #1416 ) ( e3eb82f )

  • Support for Model Versioning ( #1438 ) ( d890685 )

  • Vertex AI Experiments GA ( #1410 ) ( 24d1bb6 )

Bug Fixes

  • Fixed docstrings for wildcards and matching engine type ( #1220 ) ( d778dee )

  • Removed dirs_exist_ok parameter as it’s not backwards compatible ( #1170 ) ( 50d4129 )

1.14.0 (2022-06-08)

Features

  • add a way to easily clone a PipelineJob ( #1239 ) ( efaf6ed )

  • add display_name and metadata to ModelEvaluation in aiplatform model_evaluation.proto ( b6bf6dc )

  • add Examples to Explanation related messages in aiplatform v1beta1 explanation.proto ( b6bf6dc )

  • Add hierarchy and window configs to Vertex Forecasting training job ( #1255 ) ( 8560fa8 )

  • add holiday regions for vertex forecasting ( #1253 ) ( 0036ab0 )

  • add IAM policy to aiplatform_v1beta1.yaml ( b6bf6dc )

  • add latent_space_source to ExplanationMetadata in aiplatform v1 explanation_metadata.proto ( b6bf6dc )

  • add latent_space_source to ExplanationMetadata in aiplatform v1beta1 explanation_metadata.proto ( b6bf6dc )

  • add preset configuration for example-based explanations in aiplatform v1beta1 explanation.proto ( b6bf6dc )

  • add scaling to OnlineServingConfig in aiplatform v1 featurestore.proto ( b6bf6dc )

  • add seq2seq forecasting training job ( #1196 ) ( 643d335 )

  • add successful_forecast_point_count to CompletionStats in completion_stats.proto ( b6bf6dc )

  • add template_metadata to PipelineJob in aiplatform v1 pipeline_job.proto ( b6bf6dc )

  • Add Vertex Forecasting E2E test. ( #1248 ) ( e82c179 )

  • Added forecasting snippets and fixed bugs with existing snippets ( #1210 ) ( 4e4bff5 )

Bug Fixes

  • change endpoint update method to return resource ( #1409 ) ( 44e279b )

  • Changed system test to use list_models() correctly ( #1397 ) ( a3da19a )

  • Pinned protobuf to prevent issues with pb files. ( #1398 ) ( 7a54637 )

Documentation

  • fix changelog header to consistent size ( #1404 ) ( f6a7e6f )

1.13.1 (2022-05-26)

Features

  • add batch_size kwarg for batch prediction jobs ( #1194 ) ( 50bdb01 )

  • add update endpoint ( #1162 ) ( 0ecfe1e )

  • support autoscaling metrics when deploying models ( #1197 ) ( 095717c )

Bug Fixes

Documentation

  • update aiplatform SDK arrangement for Sphinx ( #1163 ) ( e9510ea )

Miscellaneous Chores

1.13.0 (2022-05-09)

Features

  • add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1 study.proto ( 847ad78 )

  • add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1beta1 study.proto ( 847ad78 )

  • add JOB_STATE_UPDATING to JobState in aiplatform v1 job_state.proto ( 847ad78 )

  • add JOB_STATE_UPDATING to JobState in aiplatform v1beta1 job_state.proto ( 847ad78 )

  • add LatestMonitoringPipelineMetadata to ModelDeploymentMonitoringJob in aiplatform v1beta1 model_deployment_monitoring_job.proto ( 847ad78 )

  • add ListModelVersion, DeleteModelVersion, and MergeVersionAliases rpcs to aiplatform v1beta1 model_service.proto ( 847ad78 )

  • add MfsMount in aiplatform v1 machine_resources.proto ( 847ad78 )

  • add MfsMount in aiplatform v1beta1 machine_resources.proto ( 847ad78 )

  • add model_id and parent_model to TrainingPipeline in aiplatform v1beta1 training_pipeline.proto ( 847ad78 )

  • add model_version_id to DeployedModel in aiplatform v1beta1 endpoint.proto ( 847ad78 )

  • add model_version_id to PredictResponse in aiplatform v1beta1 prediction_service.proto ( 847ad78 )

  • add model_version_id to UploadModelRequest and UploadModelResponse in aiplatform v1beta1 model_service.proto ( 847ad78 )

  • add nfs_mounts to WorkPoolSpec in aiplatform v1 custom_job.proto ( 847ad78 )

  • add nfs_mounts to WorkPoolSpec in aiplatform v1beta1 custom_job.proto ( 847ad78 )

  • add Pandas DataFrame support to TabularDataset ( #1185 ) ( 4fe4558 )

  • add PredictRequestResponseLoggingConfig to aiplatform v1beta1 endpoint.proto ( 847ad78 )

  • add reserved_ip_ranges to CustomJobSpec in aiplatform v1 custom_job.proto ( #1165 ) ( 847ad78 )

  • add reserved_ip_ranges to CustomJobSpec in aiplatform v1beta1 custom_job.proto ( 847ad78 )

  • add template_metadata to PipelineJob in aiplatform v1beta1 pipeline_job.proto ( #1186 ) ( 99aca4a )

  • add version_id to Model in aiplatform v1beta1 model.proto ( 847ad78 )

  • allow creating featurestore without online node ( #1180 ) ( 3224ae3 )

  • Allow users to specify timestamp split for vertex forecasting ( #1187 ) ( ee49e00 )

  • Make matching engine API public ( #1192 ) ( 469db6b )

  • rename Similarity to Examples, and similarity to examples in ExplanationParameters in aiplatform v1beta1 explanation.proto ( 847ad78 )

Documentation

  • fix type in docstring for map fields ( 847ad78 )

1.12.1 (2022-04-20)

Features

Bug Fixes

  • change default for create_request_timeout arg to None ( #1175 ) ( 47791f7 )

Documentation

  • endpoint.create => aiplatform.Endpoint.create ( #1153 ) ( 1122a26 )

  • update changelog headers ( #1164 ) ( c1e899d )

  • update model code snippet order in README ( #1154 ) ( 404d7f1 )

Miscellaneous Chores

1.12.0 (2022-04-07)

Features

  • add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto ( 38f3711 )

  • add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto ( 38f3711 )

  • add disable_monitoring to Feature in aiplatform v1 feature.proto ( 38f3711 )

  • add disable_monitoring to Feature in aiplatform v1beta1 feature.proto ( 38f3711 )

  • Add done method for pipeline, training, and batch prediction jobs ( #1062 ) ( f3338fc )

  • add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto ( 38f3711 )

  • add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto ( 38f3711 )

  • add ImportModelEvaluation in aiplatform v1 model_service.proto ( #1105 ) ( ef5930c )

  • add monitoring_config to EntityType in aiplatform v1 entity_type.proto ( #1077 ) ( 38f3711 )

  • add monitoring_stats_anomalies to Feature in aiplatform v1 feature.proto ( 38f3711 )

  • add monitoring_stats_anomalies to Feature in aiplatform v1beta1 feature.proto ( 38f3711 )

  • add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto ( 38f3711 )

  • add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto ( 38f3711 )

  • add objective to MonitoringStatsSpec in aiplatform v1 featurestore_service.proto ( 38f3711 )

  • add objective to MonitoringStatsSpec in aiplatform v1beta1 featurestore_service.proto ( 38f3711 )

  • add PredictRequestResponseLoggingConfig to Endpoint in aiplatform v1 endpoint.proto ( #1072 ) ( be0ccc4 )

  • add staleness_days to SnapshotAnalysis in aiplatform v1 featurestore_monitoring.proto ( 38f3711 )

  • add staleness_days to SnapshotAnalysis in aiplatform v1beta1 featurestore_monitoring.proto ( 38f3711 )

  • Add support for Vertex Tables Q1 regions ( #1065 ) ( 6383d4f )

  • add timeout arg across SDK ( #1099 ) ( 184f7f3 )

  • Add timeout arguments to Endpoint.predict and Endpoint.explain ( #1094 ) ( cc59e60 )

  • Made display_name parameter optional for most calls ( #882 ) ( 400b760 )

  • sdk:enable loading both JSON and YAML pipelines IR ( #1089 ) ( f2e70b1 )

  • v1beta1:add service_account to BatchPredictionJob in batch_prediction_job.proto ( #1084 ) ( b7a5177 )

Bug Fixes

  • add resource manager utils to get project ID from project number ( #1068 ) ( f10a1d4 )

  • add self.wait() in operations after optional_sync supported resource creation ( #1083 ) ( 79aeec1 )

  • Don’t throw exception when getting representation of unrun GCA objects ( #1071 ) ( c9ba060 )

  • Fix import error string showing wrong pip install path ( #1076 ) ( 74ffa19 )

  • Fixed getting project ID when running on Vertex AI; Fixes #852 ( #943 ) ( 876cb33 )

  • Give aiplatform logging its own log namespace, let the user configure their own root logger ( #1081 ) ( fb78243 )

  • Honoring the model’s supported_deployment_resources_types ( #865 ) ( db34b85 )

  • missing reference to logged_web_access_uris ( #1056 ) ( 198a1b5 )

  • system tests failure from test_upload_and_deploy_xgboost_model ( #1149 ) ( c8422a9 )

Documentation

  • fix CustomContainerTrainingJob example in docstring ( #1101 ) ( d2fb9db )

  • improve bigquery_destination_prefix docstring ( #1098 ) ( a46df64 )

  • Include time dependency in documentation for weight, time, and target columns. ( #1102 ) ( 52273c2 )

  • samples:read, import, batch_serve, batch_create features ( #1046 ) ( 80dd40d )

  • Update AutoML Video docstring ( #987 ) ( 6002d5d )

1.11.0 (2022-03-03)

Features

  • add additional_experiement flag in the tables and forecasting training job ( #979 ) ( 5fe59a4 )

  • add TPU_V2 & TPU_V3 values to AcceleratorType in aiplatform v1/v1beta1 accelerator_type.proto ( #1010 ) ( 09c2e8a )

  • Added scheduling to CustomTrainingJob, CustomPythonPackageTrainingJob, CustomContainerTrainingJob ( #970 ) ( 89078e0 )

Bug Fixes

  • deps:allow google-cloud-storage < 3.0.0dev ( #1008 ) ( 1c34154 )

  • deps:require google-api-core>=1.31.5, >=2.3.2 ( #1050 ) ( dfbd68a )

  • deps:require proto-plus>=1.15.0 ( dfbd68a )

  • enforce bq SchemaField field_type and mode using feature value_type ( #1019 ) ( 095bea2 )

  • Fix create_lit_model_from_endpoint not accepting models that don’t return a dictionary. ( #1020 ) ( b9a057d )

  • loosen assertions for system test featurestore ( #1040 ) ( 2ba404f )

  • remove empty scripts kwarg in setup.py ( #1014 ) ( ef3fcc8 )

  • show logs when TFX pipelines are submitted ( #976 ) ( c10923b )

  • update system test_model_upload to use BUILD_SPECIFIC_GCP_PROJECT ( #1043 ) ( e7d2719 )

Documentation

  • samples:add samples to create/delete featurestore ( #980 ) ( 5ee6354 )

  • samples:added create feature and create entity type samples and tests ( #984 ) ( d221e6b )

1.10.0 (2022-02-07)

Features

  • _TrainingScriptPythonPackager to support folders ( #812 ) ( 3aec6a7 )

  • add dedicated_resources to DeployedIndex in aiplatform v1beta1 index_endpoint.proto feat: add Scaling to OnlineServingConfig in aiplatform v1beta1 featurestore.proto chore: sort imports ( #991 ) ( 7a7f0d4 )

  • add dedicated_resources to DeployedIndex message in aiplatform v1 index_endpoint.proto chore: sort imports ( #990 ) ( a814923 )

  • Add XAI SDK integration to TensorFlow models with LIT integration ( #917 ) ( ea2b5cf )

  • Added aiplatform.Model.update method ( #952 ) ( 44e208a )

  • Enable europe-west6 and northamerica-northeast2 regions ( 0f6b670 )

  • enable feature store batch serve to BigQuery and GCS for csv and tfrecord ( #919 ) ( c840728 )

  • enable feature store batch serve to Pandas DataFrame; fix: read instances uri for batch serve ( #983 ) ( e0fec36 )

  • enable feature store online serving ( #918 ) ( b8f5f82 )

  • enable ingest from pd.DataFrame ( #977 ) ( 9289f2d )

  • Open LIT with a deployed model ( #963 ) ( ea16849 )

Bug Fixes

  • Fixed BigQuery datasets that have colon in URI ( #855 ) ( 153578f )

  • Fixed integration test for model.upload ( #975 ) ( 0ca3747 )

  • rename teardown fixture ( #1004 ) ( fcd0096 )

Documentation

  • samples:replace deprecated fields in create_training_pipeline_tabular_forecasting_sample.py ( #981 ) ( 9ebc972 )

1.9.0 (2021-12-29)

Features

  • add create in Featurestore, EntityType, Feature; add create_entity_type in Featurestore; add create_feature, batch_create_features in EntityType; add ingest_from_* for bq and gcs in EntityType; add and update delete with force delete nested resources ( #872 ) ( ba11c3d )

  • Add LIT methods for Pandas DataFrame and TensorFlow saved model. ( #874 ) ( 03cf301 )

  • Add support to create TensorboardExperiment ( #909 ) ( 96ce738 )

  • Add support to create TensorboardRun ( #912 ) ( 8df74a2 )

Bug Fixes

  • Fix timestamp proto util to default to timestamp at call time. ( #933 ) ( d72a254 )

  • Improve handling of undeploying model without redistributing remaining traffic ( #898 ) ( 8a8a4fa )

  • issues/192254729 ( #914 ) ( 3ec620c )

  • issues/192254729 ( #915 ) ( 0f22ff6 )

  • use open_in_new_tab in the render method. ( #926 ) ( 04618e0 )

1.8.1 (2021-12-14)

Bug Fixes

  • add clarity to param model_name ( #888 ) ( 1d81783 )

  • add clarity to parameters per user feedback ( #886 ) ( 37ee0a1 )

  • add param for multi-label per user’s feedback ( #887 ) ( fda942f )

  • add support for API base path overriding ( #908 ) ( 45c4086 )

  • Important the correct constants and use v1 for tensorboard experiments ( #905 ) ( 48c2bf1 )

  • incorrect uri for IOD yaml ( #889 ) ( e108ef8 )

  • Minor docstring and snippet fixes ( #873 ) ( 578e06d )

Documentation

  • Update references to containers and notebook samples. ( #890 ) ( 67fa1f1 )

  • Updated docstrings with exception error classes ( #894 ) ( f9aecd2 )

1.8.0 (2021-12-03)

Features

  • Add cloud profiler to training_utils ( 6d5c7c4 )

  • add enable_private_service_connect field to Endpoint feat: add id field to DeployedModel feat: add service_attachment field to PrivateEndpoints feat: add endpoint_id to CreateEndpointRequest and method signature to CreateEndpoint feat: add method… ( #878 ) ( ca813be )

  • add enable_private_service_connect field to Endpoint feat: add id field to DeployedModel feat: add service_attachment field to PrivateEndpoints feat: add endpoint_id to CreateEndpointRequest and method signature to CreateEndpoint feat: add method… ( #879 ) ( 47e93b2 )

  • add featurestore module including Featurestore, EntityType, and Feature classes; add get, update, delete, list methods in all featurestore classes; add search method in Feature class ( #850 ) ( 66745a6 )

  • Add prediction container URI builder method ( #805 ) ( 91dd3c0 )

  • default to custom job display name if experiment name looks like a custom job ID ( #833 ) ( 8b9376e )

  • Support uploading local models ( #779 ) ( bffbd9d )

  • Tensorboard v1 protos release ( #847 ) ( e0fc3d9 )

  • updating Tensorboard related code to use v1 ( #851 ) ( b613b26 )

  • Upgrade Tensorboard from v1beta1 to v1 ( #849 ) ( c40ec85 )

Bug Fixes

  • Import error for cloud_profiler ( #869 ) ( 0f124e9 )

  • Support multiple instances in custom predict sample ( #857 ) ( 8cb4839 )

Documentation

  • Added comment for evaluation_id to python examples ( #860 ) ( 004bf5f )

  • Reverted IDs in model_service snippets test ( #871 ) ( da747b5 )

  • Update name of BQ source parameter in samples ( #859 ) ( f11b598 )

1.7.1 (2021-11-16)

Features

  • Add support for new Vertex regions ( #811 ) ( 8d04138 )

Bug Fixes

  • add parameters_value in PipelineJob for schema > 2.0.0 ( #817 ) ( 900a449 )

  • exclude support for python 3.10 ( #831 ) ( 0301a1d )

Miscellaneous Chores

1.7.0 (2021-11-06)

Features

  • Adds support for google.protobuf.Value pipeline parameters in the parameter_values field ( #807 ) ( c97199d )

  • Adds support for google.protobuf.Value pipeline parameters in the parameter_values field ( #808 ) ( 726b620 )

  • PipelineJob switch to v1 API from v1beta1 API ( #750 ) ( 8db7e0c )

Bug Fixes

  • Correct PipelineJob credentials description ( #816 ) ( 49aaa87 )

  • Fixed docstrings for Dataset in AutoMLForecastingTrainingJob ( 760887b )

Documentation

  • Fix pydocs README to be consistent with repo README ( #821 ) ( 95dbd60 )

  • Update sample with feedback from b/191251050 ( #818 ) ( 6b2d938 )

1.6.2 (2021-11-01)

Features

  • Add PipelineJob.submit to create PipelineJob without monitoring it’s completion. ( #798 ) ( 7ab05d5 )

  • support new protobuf value param types for Pipeline Job client ( #797 ) ( 2fc05ca )

Bug Fixes

  • Add retries when polling during monitoring runs ( #786 ) ( 45401c0 )

  • use version.py for versioning ( #804 ) ( 514031f )

  • Widen system test timeout, handle tearing down failed training pipelines ( #791 ) ( 78879e2 )

Miscellaneous Chores

1.6.1 (2021-10-25)

Features

  • Add debugging terminal support for CustomJob, HyperparameterTun… ( #699 ) ( 2deb505 )

  • add support for python 3.10 ( #769 ) ( 8344804 )

  • Add training_utils folder and environment_variables for training ( 141c008 )

  • enable reduction server ( #741 ) ( 8ef0ded )

  • enabling AutoML Forecasting training response to include BigQuery location of exported evaluated examples ( #657 ) ( c1c2326 )

  • PipelineJob:allow PipelineSpec as param ( #774 ) ( f90a1bd )

  • pre batch creating TensorboardRuns and TensorboardTimeSeries in one_shot mode to speed up uploading ( #772 ) ( c9f68c6 )

Bug Fixes

  • cast resource labels to dict type ( #783 ) ( 255edc9 )

  • Remove sync parameter from create_endpoint_sample ( #695 ) ( 0477f5a )

Miscellaneous Chores

1.6.0 (2021-10-12)

Features

  • add featurestore service to aiplatform v1 ( #765 ) ( 68c88e4 )

  • Add one shot profile uploads to tensorboard uploader. ( #704 ) ( a83f253 )

  • Added column_specs, training_encryption_spec_key_name, model_encryption_spec_key_name to AutoMLForecastingTrainingJob.init and various split methods to AutoMLForecastingTrainingJob.run ( #647 ) ( 7cb6976 )

  • Lazy load Endpoint class ( #655 ) ( c795c6f )

1.5.0 (2021-09-30)

Features

  • Add data plane code snippets for feature store service ( #713 ) ( e3ea683 )

  • add flaky test diagnostic script ( #734 ) ( 09e48de )

  • add vizier service to aiplatform v1 BUILD.bazel ( #731 ) ( 1a580ae )

  • code snippets for feature store control plane ( #709 ) ( 8e06ced )

  • Updating the Tensorboard uploader to use the new batch write API so it runs more efficiently ( #710 ) ( 9d1b01a )

Bug Fixes

1.4.3 (2021-09-17)

Features

  • PipelineJob:support dict, list, bool typed input parameters fr… ( #693 ) ( 243b75c )

Bug Fixes

  • Update milli node_hours for image training ( #663 ) ( 64768c3 )

  • XAI Metadata compatibility with Model.upload ( #705 ) ( f0570cb )

Miscellaneous Chores

1.4.2 (2021-09-10)

Features

  • add explanation metadata get_metadata_protobuf for reuse ( #672 ) ( efb6d18 )

1.4.1 (2021-09-07)

Features

  • add prediction service RPC RawPredict to aiplatform_v1beta1 feat: add tensorboard service RPCs to aiplatform_v1beta1: BatchCreateTensorboardRuns, BatchCreateTensorboardTimeSeries, WriteTensorboardExperimentData feat: add model_deployment_monitori… ( #670 ) ( b73cd94 )

  • add Vizier service to aiplatform v1 ( #671 ) ( 179150a )

  • add XAI, model monitoring, and index services to aiplatform v1 ( #668 ) ( 1fbce55 )

  • Update tensorboard uploader to use Dispatcher for handling different event types ( #651 ) ( d20b520 ), closes #519

Documentation

1.4.0 (2021-08-30)

Features

  • add filter and timestamp splits ( #627 ) ( 1a13577 )

  • add labels to all resource creation apis ( #601 ) ( 4e7666a )

  • add PipelineJob.list ( a58ea82 )

  • add support for export_evaluated_data_items_config in AutoMLTab… ( #583 ) ( 2a6b0a3 )

  • add util functions to get URLs for Tensorboard web app. ( #635 ) ( 8d88c00 )

  • Add wait_for_resource_creation to BatchPredictionJob and unblock async creation when model is pending creation. ( #660 ) ( db580ad )

  • Added the VertexAiResourceNoun.to_dict() method ( #588 ) ( b478075 )

  • expose base_output_dir for custom job ( #586 ) ( 2f138d1 )

  • expose boot disk type and size for CustomTrainingJob, CustomPythonPackageTrainingJob, and CustomContainerTrainingJob ( #602 ) ( 355ea24 )

  • split GAPIC samples by service ( #599 ) ( 5f15b4f )

Bug Fixes

  • Fixed bug in TabularDataset.column_names ( #590 ) ( 0fbcd59 )

  • pipeline none values ( #649 ) ( 2f89343 )

  • Populate service_account and network in PipelineJob instead of pipeline_spec ( #658 ) ( 8fde2ce )

  • re-remove extra TB dependencies introduced due to merge conflict ( #593 ) ( 433b94a )

  • Update BatchPredictionJob.iter_outputs() and BQ docstrings ( #631 ) ( 28f32fd )

1.3.0 (2021-07-30)

Features

  • add get method for PipelineJob ( #561 ) ( fe5e6e4 )

  • add Samples section to CONTRIBUTING.rst ( #558 ) ( d35c466 )

  • add tensorboard resource management ( #539 ) ( 6f8d3d1 )

  • add tf1 metadata builder ( #526 ) ( 918998c )

  • add wait for creation and more informative exception when properties are not available ( #566 ) ( e346117 )

  • Adds a new API method FindMostStableBuild ( 6a99b12 )

  • Adds attribution_score_drift_threshold field ( 6a99b12 )

  • Adds attribution_score_skew_thresholds field ( 6a99b12 )

  • Adds BigQuery output table field to batch prediction job output config ( 6a99b12 )

  • Adds CustomJob.enable_web_access field ( 6a99b12 )

  • Adds CustomJob.web_access_uris field ( 6a99b12 )

  • Adds Endpoint.network, Endpoint.private_endpoints fields and PrivateEndpoints message ( 6a99b12 )

  • Adds Execution.State constants: CACHED and CANCELLED ( 6a99b12 )

  • Adds Feature Store features ( 6a99b12 )

  • Adds fields to Study message ( 6a99b12 )

  • Adds IndexEndpoint.private_ip_ranges field ( 6a99b12 )

  • Adds IndexEndpointService.deployed_index_id field ( 6a99b12 )

  • Adds MetadataService.DeleteArtifact and DeleteExecution methods ( 6a99b12 )

  • Adds ModelMonitoringObjectConfig.explanation_config field ( 6a99b12 )

  • Adds ModelMonitoringObjectConfig.ExplanationConfig message field ( 6a99b12 )

  • column specs for tabular transformation ( #466 ) ( 71d0bd4 )

  • enable_caching in PipelineJob to compile time settings ( #557 ) ( c9da662 )

  • Removes breaking change from v1 version of AI Platform protos ( 6a99b12 )

Bug Fixes

  • change default replica count to 1 for custom training job classes ( #579 ) ( c24251f )

  • create pipeline job with user-specified job id ( #567 ) ( df68ec3 )

  • deps:pin ‘google-{api,cloud}-core’, ‘google-auth’ to allow 2.x versions ( #556 ) ( 5d79795 )

  • enable self signed jwt for grpc ( #570 ) ( 6a99b12 )

Documentation

1.2.0 (2021-07-14)

Features

  • Add additional_experiments field to AutoMlTablesInputs ( #540 ) ( 96ee726 )

  • add always_use_jwt_access ( #498 ) ( 6df4866 )

  • add explain get_metadata function for tf2. ( #507 ) ( f6f9a97 )

  • Add structure for XAI explain (from XAI SDK) ( #502 ) ( cb9ef11 )

  • Add two new ModelType constants for Video Action Recognition training jobs ( 96ee726 )

  • Adds AcceleratorType.NVIDIA_TESLA_A100 constant ( f3a3d03 )

  • Adds additional_experiments field to AutoMlForecastingInputs ( 8077b3d )

  • Adds additional_experiments field to AutoMlTablesInputs ( #544 ) ( 8077b3d )

  • Adds AutoscalingMetricSpec message ( f3a3d03 )

  • Adds BigQuery output table field to batch prediction job output config ( f3a3d03 )

  • Adds fields to Study message ( f3a3d03 )

  • Adds JobState.JOB_STATE_EXPIRED constant ( f3a3d03 )

  • Adds PipelineService methods for Create, Get, List, Delete, Cancel ( f3a3d03 )

  • Adds two new ModelType constants for Video Action Recognition training jobs ( 8077b3d )

  • Removes AcceleratorType.TPU_V2 and TPU_V3 constants ( #543 ) ( f3a3d03 )

Bug Fixes

  • Handle nested fields from BigQuery source when getting default column_names ( #522 ) ( 3fc1d44 )

  • log pipeline completion and raise pipeline failures ( #523 ) ( 2508fe9 )

  • making the uploader depend on tensorflow-proper ( #499 ) ( b95e040 )

  • Set prediction client when listing Endpoints ( #512 ) ( 95639ee )

1.1.1 (2021-06-22)

Features

  • add cancel method to pipeline client ( #488 ) ( 3b19fff )

Bug Fixes

  • check if training_task_metadata is populated before logging backingCustomJob ( #494 ) ( 2e627f8 )

Documentation

  • omit mention of Python 2.7 in ‘CONTRIBUTING.rst’ ( #1127 ) ( #489 ) ( cbc47f8 )

Miscellaneous Chores

1.1.0 (2021-06-17)

Features

  • add aiplatform API Vizier service ( fdc968f )

  • add featurestore, index, metadata, monitoring, pipeline, and tensorboard services to aiplatform v1beta1 ( fdc968f )

  • add invalid_row_count to ImportFeatureValuesResponse and ImportFeatureValuesOperationMetadata ( fdc968f )

  • add pipeline client init and run to vertex AI ( 1f1226f )

  • add tensorboard support for CustomTrainingJob, CustomContainerTrainingJob, CustomPythonPackageTrainingJob ( #462 ) ( 8cfd611 )

  • adds enhanced protos for time series forecasting ( fdc968f )

  • adds enhanced protos for time series forecasting ( #374 ) ( fdc968f )

  • allow the prediction endpoint to be overridden ( #461 ) ( c2cf612 )

  • AutoMlImageSegmentationInputs.ModelType adds MOBILE_TF_LOW_LATENCY constant ( fdc968f )

  • AutoMlVideoClassificationInputs.ModelType adds MOBILE_JETSON_VERSATILE_1 constant ( fdc968f )

  • Expose additional attributes into Vertex SDK to close gap with GAPIC ( #477 ) ( 572a27c )

  • ImageSegmentationPredictionResult.category_mask field changed to string data type ( fdc968f )

  • remove unsupported accelerator types ( fdc968f )

  • removes forecasting (time_series_forecasting proto) from public v1beta1 protos ( fdc968f )

  • removes unused protos from schema/ folders: schema/io_format.proto, schema/saved_query_metadata.proto ( fdc968f )

  • support additional_experiments for AutoML Tables and AutoML Forecasting ( #428 ) ( b4211f2 )

  • support self-signed JWT flow for service accounts ( fdc968f )

Bug Fixes

  • add async client to %name_%version/init.py ( fdc968f )

  • add target_column docstring ( #473 ) ( c0543cd )

  • configuring timeouts for aiplatform v1 methods ( fdc968f )

  • Enable MetadataStore to use credentials when aiplatfrom.init passed experiment and credentials. ( #460 ) ( e7bf0d8 )

  • exclude docs and tests from package ( #481 ) ( b209904 )

  • pass credentials to BQ and GCS clients ( #469 ) ( 481d172 )

  • remove display_name from FeatureStore ( fdc968f )

  • Remove URI attribute from Endpoint sample ( #478 ) ( e3cbdd8 )

Documentation

  • changes product name to Vertex AI ( fdc968f )

  • correct link to fieldmask ( fdc968f )

  • removes tinyurl links ( fdc968f )

1.0.1 (2021-05-21)

Bug Fixes

  • use resource name location when passed full resource name ( #421 ) ( f40f322 )

1.0.0 (2021-05-19)

Features

  • add custom and hp tuning ( #388 ) ( aab9e58 )

  • add tensorboard support to custom job and hyperparameter tuning job ( #404 ) ( fa9bc39 )

Bug Fixes

  • tb-gcp-uploader to show flags in “–help” correctly ( #409 ) ( 9f603dd )

Miscellaneous Chores

0.9.0 (2021-05-17)

Features

  • Add AutoML vision, Custom training job, and generic prediction samples ( #300 ) ( cc1a708 )

  • Add VPC Peering support to CustomTrainingJob classes ( #378 ) ( 56273f7 )

  • AutoML Forecasting, Metadata Experiment Tracking, Tensorboard uploader ( e94c9db )

Bug Fixes

0.8.0 (2021-05-11)

Features

  • Add export model ( #353 ) ( 12c5be4 )

  • add mbsdk video dataset samples ( #307 ) ( 24d6920 )

  • Add service account support to Custom Training and Model deployment ( #342 ) ( b4b1b12 )

  • add services to aiplatform_v1beta1 ( #367 ) ( beb4032 )

  • Added create_training_pipeline_custom_job_sample and create_training_pipeline_custom_training_managed_dataset_sample and fixed create_training_pipeline_image_classification_sample ( #343 ) ( 1c6b998 )

  • Added create_training_pipeline_custom_package_job_sample and create_training_pipeline_custom_container_job_sample and reworked create_training_pipeline_custom_job_sample ( #351 ) ( 7abf8ef )

  • Added default AutoMLTabularTrainingJob column transformations ( #357 ) ( 4fce8c4 )

  • Added deploy_model_with_dedicated_resources_sample, deploy_model_with_automatic_resources_sample, upload_model and get_model samples ( #337 ) ( ef4f6f8 )

  • Added explain tabular samples ( #348 ) ( c95d1ce )

  • aiplatform:Add support for setting User agent header ( #364 ) ( d50d26d )

  • expose env var in cust training class run func args ( #366 ) ( 7ae28b8 )

  • MBSDK Tabular samples ( #338 ) ( 4241738 )

  • update featurestore ( #377 ) ( bc17163 )

Bug Fixes

  • Add all supported uCAIP GA regions ( #350 ) ( 5e14c59 )

  • aiplatform:Fix doc formatting ( #359 ) ( 857f63d )

  • Bump google-cloud-storage min version to 1.32.0 ( #371 ) ( 6fda925 )

  • default model_display_name to _CustomTrainingJob.display_name when model_serving_container_image_uri is provided ( #324 ) ( a5fa7a2 )

  • env formatiing ( #379 ) ( 6bc4c61 )

  • remove Optional type hint on deploy ( #345 ) ( 79b0ab1 )

0.7.1 (2021-04-14)

Bug Fixes

  • fix list failing without order_by and local sorting ( #320 ) ( 06e99db )

0.7.0 (2021-04-14)

Features

  • Add Custom Container Prediction support, move to single API endpoint ( #277 ) ( ca7f6d6 )

  • Add initial Model Builder SDK samples ( #265 ) ( 1230dc6 )

  • Add list() method to all resource nouns ( #294 ) ( 3ec9386 )

  • add support for multiple client versions, change aiplatform from compat.V1BETA1 to compat.V1 ( #290 ) ( 89e3212 )

  • Make aiplatform.Dataset private ( #296 ) ( 1f0d5f3 )

  • parse project location when passed full resource name to get apis ( #297 ) ( 674227d )

Bug Fixes

  • add quotes to logged snippet ( 0ecd0a8 )

  • make logging more informative during training ( #310 ) ( 9a4d991 )

  • remove TPU from accelerator test cases ( 57f4fcf )

0.6.0 (2021-03-22)

Features

Bug Fixes

  • skip create data labeling job sample tests ( #254 ) ( 116a29b )

0.5.1 (2021-03-01)

Bug Fixes

  • fix create data labeling job samples tests ( #244 ) ( 3c440de )

  • fix predict sample tests for proto-plus==1.14.2 ( #250 ) ( b1c9d88 )

  • fix update export model sample, and add sample test ( #239 ) ( 20b8859 )

Documentation

0.5.0 (2021-02-17)

Features

  • exposes v1 enhanced types and adds tests ( #226 ) ( 42b587d )

  • LRO metadata ( #204 ) ( 2863dc0 )

  • moves manual enhanced lib edits outside of generated files ( #198 ) ( a04a561 )

  • updates python-aiplatform to v1 ( #212 ) ( efc00ed )

Bug Fixes

0.4.0 (2021-01-08)

Features

  • add create_batch_prediction_job samples ( #67 ) ( 96a850f )

  • add create_hyperparameter_tuning_job_python_package sample ( #76 ) ( 5155dee )

  • add create_training_pipeline_custom_training_managed_dataset sample ( #75 ) ( b012283 )

  • add custom_job samples ( #69 ) ( fb165b3 )

  • add data_labeling samples ( #78 ) ( 7daacd5 )

  • add get_custom_job and get_hyperparameter_tuning_job samples ( #68 ) ( 26da7a7 )

  • add schema namespace ( #140 ) ( 1cbd4a5 )

  • add video action recognition samples ( #77 ) ( 4c60ad6 )

  • Added tabular forecasting sample ( #156 ) ( a23857b )

  • Added tabular forecasting samples ( #128 ) ( 69fc7fd )

  • adds function/method enhancements, demo samples ( #122 ) ( 1a302d2 )

  • adds text batch prediction samples ( #82 ) ( ad09c29 )

  • initial generation of enhanced types ( #102 ) ( 5ddbf16 )

  • update create_training_pipeline samples ( #142 ) ( 624a08d )

  • xai samples ( #83 ) ( 5cf3859 )

Bug Fixes

Documentation

0.3.1 (2020-11-13)

Features

0.3.0 (2020-11-05)

Features

Bug Fixes

  • re-add py sessions to noxfile ( #22 ) ( 3c713d5 )
Create a Mobile Website
View Site in Mobile | Classic
Share by: