Class ParameterSpec (1.27.1)

  ParameterSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Represents a single parameter to optimize.

This message has oneof _ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

Attributes

Name
Description
double_value_spec
google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.DoubleValueSpec
The value spec for a 'DOUBLE' parameter. This field is a member of oneof _ parameter_value_spec .
integer_value_spec
google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.IntegerValueSpec
The value spec for an 'INTEGER' parameter. This field is a member of oneof _ parameter_value_spec .
categorical_value_spec
google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.CategoricalValueSpec
The value spec for a 'CATEGORICAL' parameter. This field is a member of oneof _ parameter_value_spec .
discrete_value_spec
google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.DiscreteValueSpec
The value spec for a 'DISCRETE' parameter. This field is a member of oneof _ parameter_value_spec .
parameter_id
str
Required. The ID of the parameter. Must not contain whitespaces and must be unique amongst all ParameterSpecs.
scale_type
google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.ScaleType
How the parameter should be scaled. Leave unset for CATEGORICAL parameters.
conditional_parameter_specs
MutableSequence[ google.cloud.aiplatform_v1beta1.types.StudySpec.ParameterSpec.ConditionalParameterSpec ]
A conditional parameter node is active if the parameter's value matches the conditional node's parent_value_condition. If two items in conditional_parameter_specs have the same name, they must have disjoint parent_value_condition.

Classes

CategoricalValueSpec

  CategoricalValueSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Value specification for a parameter in CATEGORICAL type.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ConditionalParameterSpec

  ConditionalParameterSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Represents a parameter spec with condition from its parent parameter.

This message has oneof _ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DiscreteValueSpec

  DiscreteValueSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Value specification for a parameter in DISCRETE type.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DoubleValueSpec

  DoubleValueSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Value specification for a parameter in DOUBLE type.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

IntegerValueSpec

  IntegerValueSpec 
 ( 
 mapping 
 = 
 None 
 , 
 * 
 , 
 ignore_unknown_fields 
 = 
 False 
 , 
 ** 
 kwargs 
 ) 
 

Value specification for a parameter in INTEGER type.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ScaleType

  ScaleType 
 ( 
 value 
 ) 
 

The type of scaling that should be applied to this parameter.

Values: SCALE_TYPE_UNSPECIFIED (0): By default, no scaling is applied. UNIT_LINEAR_SCALE (1): Scales the feasible space to (0, 1) linearly. UNIT_LOG_SCALE (2): Scales the feasible space logarithmically to (0, 1). The entire feasible space must be strictly positive. UNIT_REVERSE_LOG_SCALE (3): Scales the feasible space "reverse" logarithmically to (0, 1). The result is that values close to the top of the feasible space are spread out more than points near the bottom. The entire feasible space must be strictly positive.