- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.116.0
- 1.115.0
- 1.114.0
- 1.113.0
- 1.112.0
- 1.111.0
- 1.110.0
- 1.109.0
- 1.108.0
- 1.107.0
- 1.106.0
- 1.105.0
- 1.104.0
- 1.103.0
- 1.102.0
- 1.101.0
- 1.100.0
- 1.99.0
- 1.98.0
- 1.97.0
- 1.96.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
API documentation for aiplatform
package.
Classes
Artifact
Metadata Artifact resource for Vertex AI
AutoMLForecastingTrainingJob
Class to train AutoML forecasting models.
AutoMLImageTrainingJob
Constructs a AutoML Image Training Job.
AutoMLTabularTrainingJob
Constructs a AutoML Tabular Training Job.
Example usage:
job = training_jobs.AutoMLTabularTrainingJob( display_name="my_display_name", optimization_prediction_type="classification", optimization_objective="minimize-log-loss", column_specs={"column_1": "auto", "column_2": "numeric"}, labels={'key': 'value'}, )
AutoMLTextTrainingJob
Constructs a AutoML Text Training Job.
AutoMLVideoTrainingJob
Constructs a AutoML Video Training Job.
BatchPredictionJob
Retrieves a BatchPredictionJob resource and instantiates its representation.
CustomContainerTrainingJob
Class to launch a Custom Training Job in Vertex AI using a Container.
CustomJob
Vertex AI Custom Job.
CustomPythonPackageTrainingJob
Class to launch a Custom Training Job in Vertex AI using a Python Package.
Takes a training implementation as a python package and executes that package in Cloud Vertex AI Training.
CustomTrainingJob
Class to launch a Custom Training Job in Vertex AI using a script.
Takes a training implementation as a python script and executes that script in Cloud Vertex AI Training.
Endpoint
Retrieves an endpoint resource.
EntityType
Public managed EntityType resource for Vertex AI.
Execution
Metadata Execution resource for Vertex AI
Experiment
Represents a Vertex AI Experiment resource.
ExperimentRun
A Vertex AI Experiment run.
Feature
Managed feature resource for Vertex AI.
Featurestore
Managed featurestore resource for Vertex AI.
HyperparameterTuningJob
Vertex AI Hyperparameter Tuning Job.
ImageDataset
A managed image dataset resource for Vertex AI.
Use this class to work with a managed image dataset. To create a managed image dataset, you need a datasource file in CSV format and a schema file in YAML format. A schema is optional for a custom model. You put the CSV file and the schema into Cloud Storage buckets.
Use image data for the following objectives:
- Single-label classification. For more information, see Prepare image training data for single-label classification .
- Multi-label classification. For more information, see Prepare image training data for multi-label classification .
- Object detection. For more information, see Prepare image training data for object detection .
The following code shows you how to create an image dataset by importing data from a CSV datasource file and a YAML schema file. The schema file you use depends on whether your image dataset is used for single-label classification, multi-label classification, or object detection.
my_dataset = aiplatform.ImageDataset.create(
display_name="my-image-dataset",
gcs_source=['gs://path/to/my/image-dataset.csv'],
import_schema_uri=['gs://path/to/my/schema.yaml']
)
MatchingEngineIndex
Matching Engine index resource for Vertex AI.
MatchingEngineIndexEndpoint
Matching Engine index endpoint resource for Vertex AI.
Model
Retrieves the model resource and instantiates its representation.
ModelDeploymentMonitoringJob
Vertex AI Model Deployment Monitoring Job.
This class should be used in conjunction with the Endpoint class in order to configure model monitoring for deployed models.
ModelEvaluation
Retrieves the ModelEvaluation resource and instantiates its representation.
PipelineJob
Retrieves a PipelineJob resource and instantiates its representation.
PipelineJobSchedule
Retrieves a PipelineJobSchedule resource and instantiates its representation.
PrivateEndpoint
Represents a Vertex AI PrivateEndpoint resource.
SequenceToSequencePlusForecastingTrainingJob
Class to train Sequence to Sequence (Seq2Seq) forecasting models.
TabularDataset
A managed tabular dataset resource for Vertex AI.
Use this class to work with tabular datasets. You can use a CSV file, BigQuery, or a pandas DataFrame
to create a tabular dataset. For more information about paging through
BigQuery data, see Read data with BigQuery API using
pagination
. For more
information about tabular data, see Tabular
data
.
The following code shows you how to create and import a tabular dataset with a CSV file.
my_dataset = aiplatform.TabularDataset.create(
display_name="my-dataset", gcs_source=['gs://path/to/my/dataset.csv'])
The following code shows you how to create and import a tabular dataset in two distinct steps.
my_dataset = aiplatform.TextDataset.create(
display_name="my-dataset")
my_dataset.import(
gcs_source=['gs://path/to/my/dataset.csv']
import_schema_uri=aiplatform.schema.dataset.ioformat.text.multi_label_classification
)
If you create a tabular dataset with a pandas DataFrame
,
you need to use a BigQuery table to stage the data for Vertex AI:
my_dataset = aiplatform.TabularDataset.create_from_dataframe(
df_source=my_pandas_dataframe,
staging_path=f"bq://{bq_dataset_id}.table-unique"
)
TemporalFusionTransformerForecastingTrainingJob
Class to train Temporal Fusion Transformer (TFT) forecasting models.
Tensorboard
Managed tensorboard resource for Vertex AI.
TensorboardExperiment
Managed tensorboard resource for Vertex AI.
TensorboardRun
Managed tensorboard resource for Vertex AI.
TensorboardTimeSeries
Managed tensorboard resource for Vertex AI.
TextDataset
Managed text dataset resource for Vertex AI.
TimeSeriesDataset
Managed time series dataset resource for Vertex AI
TimeSeriesDenseEncoderForecastingTrainingJob
Class to train Time series Dense Encoder (TiDE) forecasting models.
VideoDataset
Managed video dataset resource for Vertex AI.
Packages Functions
end_run
end_run
(
state
:
google
.
cloud
.
aiplatform_v1
.
types
.
execution
.
Execution
.
State
=
State
.
COMPLETE
,
)
Ends the the current experiment run.
aiplatform.start_run('my-run')
...
aiplatform.end_run()
get_experiment_df
get_experiment_df
(
experiment
:
typing
.
Optional
[
str
]
=
None
)
-
> pd
.
DataFrame
Returns a Pandas DataFrame of the parameters and metrics associated with one experiment.
Example:
aiplatform.init(experiment='exp-1') aiplatform.start_run(run='run-1') aiplatform.log_params({'learning_rate': 0.1}) aiplatform.log_metrics({'accuracy': 0.9})
aiplatform.start_run(run='run-2') aiplatform.log_params({'learning_rate': 0.2}) aiplatform.log_metrics({'accuracy': 0.95})
aiplatform.get_experiments_df()
Will result in the following DataFrame
| experiment_name | run_name | param.learning_rate | metric.accuracy |
| exp-1 | run-1 | 0.1 | 0.9 |
| exp-1 | run-2 | 0.2 | 0.95 |
get_experiment_model
get_experiment_model
(
artifact_id
:
str
,
*
,
metadata_store_id
:
str
=
"default"
,
project
:
typing
.
Optional
[
str
]
=
None
,
location
:
typing
.
Optional
[
str
]
=
None
,
credentials
:
typing
.
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
)
-
> google
.
cloud
.
aiplatform
.
metadata
.
schema
.
google
.
artifact_schema
.
ExperimentModel
Retrieves an existing ExperimentModel artifact given an artifact id.
artifact_id
Required. An artifact id of the ExperimentModel artifact.
metadata_store_id
Optional. MetadataStore to retrieve Artifact from. If not set, metadata_store_id is set to "default". If artifact_id is a fully-qualified resource name, its metadata_store_id overrides this one.
project
Optional. Project to retrieve the artifact from. If not set, project set in aiplatform.init will be used.
location
Optional. Location to retrieve the Artifact from. If not set, location set in aiplatform.init will be used.
credentials
Optional. Custom credentials to use to retrieve this Artifact. Overrides credentials set in aiplatform.init.
get_pipeline_df
get_pipeline_df
(
pipeline
:
str
)
-
> pd
.
DataFrame
Returns a Pandas DataFrame of the parameters and metrics associated with one pipeline.
pipeline
Name of the Pipeline to filter results.
init
init
(
*
,
project
:
typing
.
Optional
[
str
]
=
None
,
location
:
typing
.
Optional
[
str
]
=
None
,
experiment
:
typing
.
Optional
[
str
]
=
None
,
experiment_description
:
typing
.
Optional
[
str
]
=
None
,
experiment_tensorboard
:
typing
.
Optional
[
typing
.
Union
[
str
,
google
.
cloud
.
aiplatform
.
tensorboard
.
tensorboard_resource
.
Tensorboard
,
bool
,
]
]
=
None
,
staging_bucket
:
typing
.
Optional
[
str
]
=
None
,
credentials
:
typing
.
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
,
encryption_spec_key_name
:
typing
.
Optional
[
str
]
=
None
,
network
:
typing
.
Optional
[
str
]
=
None
,
service_account
:
typing
.
Optional
[
str
]
=
None
,
api_endpoint
:
typing
.
Optional
[
str
]
=
None
)
Updates common initialization parameters with provided options.
project
The default project to use when making API calls.
location
The default location to use when making API calls. If not set defaults to us-central-1.
experiment
Optional. The experiment name.
experiment_description
Optional. The description of the experiment.
experiment_tensorboard
Optional. The Vertex AI TensorBoard instance, Tensorboard resource name, or Tensorboard resource ID to use as a backing Tensorboard for the provided experiment. Example tensorboard resource name format: "projects/123/locations/us-central1/tensorboards/456" If experiment_tensorboard
is provided and experiment
is not, the provided experiment_tensorboard
will be set as the global Tensorboard. Any subsequent calls to aiplatform.init() with experiment
and without experiment_tensorboard
will automatically assign the global Tensorboard to the experiment
. If experiment_tensorboard
is ommitted or set to True
or None
the global Tensorboard will be assigned to the experiment
. If a global Tensorboard is not set, the default Tensorboard instance will be used, and created if it deos not exist. To disable creating and using Tensorboard with experiment
, set experiment_tensorboard
to False. Any subsequent calls to aiplatform.init() should include this setting as well.
staging_bucket
The default staging bucket to use to stage artifacts when making API calls. In the form gs://...
credentials
The default custom credentials to use when making API calls. If not provided credentials will be ascertained from the environment.
encryption_spec_key_name
Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key
. The key needs to be in the same region as where the compute resource is created. If set, this resource and all sub-resources will be secured by this key.
network
Optional. The full name of the Compute Engine network to which jobs and resources should be peered. E.g. "projects/12345/global/networks/myVPC". Private services access must already be configured for the network. If specified, all eligible jobs and resources created will be peered with this VPC.
service_account
Optional. The service account used to launch jobs and deploy models. Jobs that use service_account: BatchPredictionJob, CustomJob, PipelineJob, HyperparameterTuningJob, CustomTrainingJob, CustomPythonPackageTrainingJob, CustomContainerTrainingJob, ModelEvaluationJob.
api_endpoint
Optional. The desired API endpoint, e.g., us-central1-aiplatform.googleapis.com
log
log
(
*
,
pipeline_job
:
typing
.
Optional
[
google
.
cloud
.
aiplatform
.
pipeline_jobs
.
PipelineJob
]
=
None
)
Log Vertex AI Resources to the current experiment run.
aiplatform.start_run('my-run')
my_job = aiplatform.PipelineJob(...)
my_job.submit()
aiplatform.log(my_job)
pipeline_job
Optional. Vertex PipelineJob to associate to this Experiment Run.
log_classification_metrics
log_classification_metrics
(
*
,
labels
:
typing
.
Optional
[
typing
.
List
[
str
]]
=
None
,
matrix
:
typing
.
Optional
[
typing
.
List
[
typing
.
List
[
int
]]]
=
None
,
fpr
:
typing
.
Optional
[
typing
.
List
[
float
]]
=
None
,
tpr
:
typing
.
Optional
[
typing
.
List
[
float
]]
=
None
,
threshold
:
typing
.
Optional
[
typing
.
List
[
float
]]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
)
-
> (
google
.
cloud
.
aiplatform
.
metadata
.
schema
.
google
.
artifact_schema
.
ClassificationMetrics
)
Create an artifact for classification metrics and log to ExperimentRun. Currently support confusion matrix and ROC curve.
my_run = aiplatform.ExperimentRun('my-run', experiment='my-experiment')
classification_metrics = my_run.log_classification_metrics(
display_name='my-classification-metrics',
labels=['cat', 'dog'],
matrix=[[9, 1], [1, 9]],
fpr=[0.1, 0.5, 0.9],
tpr=[0.1, 0.7, 0.9],
threshold=[0.9, 0.5, 0.1],
)
labels
Optional. List of label names for the confusion matrix. Must be set if 'matrix' is set.
matrix
Optional. Values for the confusion matrix. Must be set if 'labels' is set.
fpr
Optional. List of false positive rates for the ROC curve. Must be set if 'tpr' or 'thresholds' is set.
tpr
Optional. List of true positive rates for the ROC curve. Must be set if 'fpr' or 'thresholds' is set.
threshold
Optional. List of thresholds for the ROC curve. Must be set if 'fpr' or 'tpr' is set.
display_name
Optional. The user-defined name for the classification metric artifact.
log_metrics
log_metrics
(
metrics
:
typing
.
Dict
[
str
,
typing
.
Union
[
float
,
int
,
str
]])
Log single or multiple Metrics with specified key and value pairs.
Metrics with the same key will be overwritten.
aiplatform.start_run('my-run', experiment='my-experiment')
aiplatform.log_metrics({'accuracy': 0.9, 'recall': 0.8})
metrics
Required. Metrics key/value pairs.
log_model
log_model
(
model
:
typing
.
Union
[
sklearn
.
base
.
BaseEstimator
,
xgb
.
Booster
,
tf
.
Module
],
artifact_id
:
typing
.
Optional
[
str
]
=
None
,
*
,
uri
:
typing
.
Optional
[
str
]
=
None
,
input_example
:
typing
.
Union
[
list
,
dict
,
pd
.
DataFrame
,
np
.
ndarray
]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
,
metadata_store_id
:
typing
.
Optional
[
str
]
=
"default"
,
project
:
typing
.
Optional
[
str
]
=
None
,
location
:
typing
.
Optional
[
str
]
=
None
,
credentials
:
typing
.
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
)
-
> google
.
cloud
.
aiplatform
.
metadata
.
schema
.
google
.
artifact_schema
.
ExperimentModel
Saves a ML model into a MLMD artifact and log it to this ExperimentRun.
Supported model frameworks: sklearn, xgboost, tensorflow.
Example usage: model = LinearRegression() model.fit(X, y) aiplatform.init( project="my-project", location="my-location", staging_bucket="gs://my-bucket", experiment="my-exp" ) with aiplatform.start_run("my-run"): aiplatform.log_model(model, "my-sklearn-model")
model
Required. A machine learning model.
artifact_id
Optional. The resource id of the artifact. This id must be globally unique in a metadataStore. It may be up to 63 characters, and valid characters are [a-z0-9_-]
. The first character cannot be a number or hyphen.
uri
Optional. A gcs directory to save the model file. If not provided, gs://default-bucket/timestamp-uuid-frameworkName-model
will be used. If default staging bucket is not set, a new bucket will be created.
input_example
Optional. An example of a valid model input. Will be stored as a yaml file in the gcs uri. Accepts list, dict, pd.DataFrame, and np.ndarray The value inside a list must be a scalar or list. The value inside a dict must be a scalar, list, or np.ndarray.
display_name
Optional. The display name of the artifact.
metadata_store_id
Optional. The <metadata_store_id> portion of the resource name with the format: projects/123/locations/us-central1/metadataStores/<metadata_store_id>/artifacts/<resource_id> If not provided, the MetadataStore's ID will be set to "default".
project
Optional. Project used to create this Artifact. Overrides project set in aiplatform.init.
location
Optional. Location used to create this Artifact. Overrides location set in aiplatform.init.
credentials
Optional. Custom credentials used to create this Artifact. Overrides credentials set in aiplatform.init.
log_params
log_params
(
params
:
typing
.
Dict
[
str
,
typing
.
Union
[
float
,
int
,
str
]])
Log single or multiple parameters with specified key and value pairs.
Parameters with the same key will be overwritten.
aiplatform.start_run('my-run')
aiplatform.log_params({'learning_rate': 0.1, 'dropout_rate': 0.2})
params
Required. Parameter key/value pairs.
log_time_series_metrics
log_time_series_metrics
(
metrics
:
typing
.
Dict
[
str
,
float
],
step
:
typing
.
Optional
[
int
]
=
None
,
wall_time
:
typing
.
Optional
[
google
.
protobuf
.
timestamp_pb2
.
Timestamp
]
=
None
,
)
Logs time series metrics to to this Experiment Run.
Requires the experiment or experiment run has a backing Vertex Tensorboard resource.
my_tensorboard = aiplatform.Tensorboard(...)
aiplatform.init(experiment='my-experiment', experiment_tensorboard=my_tensorboard)
aiplatform.start_run('my-run')
# increments steps as logged
for i in range(10):
aiplatform.log_time_series_metrics({'loss': loss})
# explicitly log steps
for i in range(10):
aiplatform.log_time_series_metrics({'loss': loss}, step=i)
metrics
Required. Dictionary of where keys are metric names and values are metric values.
step
Optional. Step index of this data point within the run. If not provided, the latest step amongst all time series metrics already logged will be used.
wall_time
Optional. Wall clock timestamp when this data point is generated by the end user. If not provided, this will be generated based on the value from time.time()
save_model
save_model
(
model
:
typing
.
Union
[
sklearn
.
base
.
BaseEstimator
,
xgb
.
Booster
,
tf
.
Module
],
artifact_id
:
typing
.
Optional
[
str
]
=
None
,
*
,
uri
:
typing
.
Optional
[
str
]
=
None
,
input_example
:
typing
.
Union
[
list
,
dict
,
pd
.
DataFrame
,
np
.
ndarray
]
=
None
,
tf_save_model_kwargs
:
typing
.
Optional
[
typing
.
Dict
[
str
,
typing
.
Any
]]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
,
metadata_store_id
:
typing
.
Optional
[
str
]
=
"default"
,
project
:
typing
.
Optional
[
str
]
=
None
,
location
:
typing
.
Optional
[
str
]
=
None
,
credentials
:
typing
.
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
)
-
> google
.
cloud
.
aiplatform
.
metadata
.
schema
.
google
.
artifact_schema
.
ExperimentModel
Saves a ML model into a MLMD artifact.
Supported model frameworks: sklearn, xgboost, tensorflow.
Example usage: aiplatform.init(project="my-project", location="my-location", staging_bucket="gs://my-bucket") model = LinearRegression() model.fit(X, y) aiplatform.save_model(model, "my-sklearn-model")
model
Required. A machine learning model.
artifact_id
Optional. The resource id of the artifact. This id must be globally unique in a metadataStore. It may be up to 63 characters, and valid characters are [a-z0-9_-]
. The first character cannot be a number or hyphen.
uri
Optional. A gcs directory to save the model file. If not provided, gs://default-bucket/timestamp-uuid-frameworkName-model
will be used. If default staging bucket is not set, a new bucket will be created.
input_example
Optional. An example of a valid model input. Will be stored as a yaml file in the gcs uri. Accepts list, dict, pd.DataFrame, and np.ndarray The value inside a list must be a scalar or list. The value inside a dict must be a scalar, list, or np.ndarray.
tf_save_model_kwargs
Optional. A dict of kwargs to pass to the model's save method. If saving a tf module, this will pass to "tf.saved_model.save" method. If saving a keras model, this will pass to "tf.keras.Model.save" method.
display_name
Optional. The display name of the artifact.
metadata_store_id
Optional. The <metadata_store_id> portion of the resource name with the format: projects/123/locations/us-central1/metadataStores/<metadata_store_id>/artifacts/<resource_id> If not provided, the MetadataStore's ID will be set to "default".
project
Optional. Project used to create this Artifact. Overrides project set in aiplatform.init.
location
Optional. Location used to create this Artifact. Overrides location set in aiplatform.init.
credentials
Optional. Custom credentials used to create this Artifact. Overrides credentials set in aiplatform.init.
start_execution
start_execution
(
*
,
schema_title
:
typing
.
Optional
[
str
]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
,
resource_id
:
typing
.
Optional
[
str
]
=
None
,
metadata
:
typing
.
Optional
[
typing
.
Dict
[
str
,
typing
.
Any
]]
=
None
,
schema_version
:
typing
.
Optional
[
str
]
=
None
,
description
:
typing
.
Optional
[
str
]
=
None
,
resume
:
bool
=
False
,
project
:
typing
.
Optional
[
str
]
=
None
,
location
:
typing
.
Optional
[
str
]
=
None
,
credentials
:
typing
.
Optional
[
google
.
auth
.
credentials
.
Credentials
]
=
None
)
-
> google
.
cloud
.
aiplatform
.
metadata
.
execution
.
Execution
Create and starts a new Metadata Execution or resumes a previously created Execution.
To start a new execution:
with aiplatform.start_execution(schema_title='system.ContainerExecution', display_name='trainer) as exc:
exc.assign_input_artifacts([my_artifact])
model = aiplatform.Artifact.create(uri='gs://my-uri', schema_title='system.Model')
exc.assign_output_artifacts([model])
To continue a previously created execution:
with aiplatform.start_execution(resource_id='my-exc', resume=True) as exc:
...
schema_title
Optional. schema_title identifies the schema title used by the Execution. Required if starting a new Execution.
resource_id
Optional. The <resource_id> portion of the Execution name with the format. This is globally unique in a metadataStore: projects/123/locations/us-central1/metadataStores/<metadata_store_id>/executions/<resource_id>.
display_name
Optional. The user-defined name of the Execution.
schema_version
Optional. schema_version specifies the version used by the Execution. If not set, defaults to use the latest version.
metadata
Optional. Contains the metadata information that will be stored in the Execution.
description
Optional. Describes the purpose of the Execution to be created.
metadata_store_id
Optional. The <metadata_store_id> portion of the resource name with the format: projects/123/locations/us-central1/metadataStores/<metadata_store_id>/artifacts/<resource_id> If not provided, the MetadataStore's ID will be set to "default".
project
Optional. Project used to create this Execution. Overrides project set in aiplatform.init.
location
Optional. Location used to create this Execution. Overrides location set in aiplatform.init.
credentials
Optional. Custom credentials used to create this Execution. Overrides credentials set in aiplatform.init.
start_run
start_run
(
run
:
str
,
*
,
tensorboard
:
typing
.
Optional
[
typing
.
Union
[
google
.
cloud
.
aiplatform
.
tensorboard
.
tensorboard_resource
.
Tensorboard
,
str
]
]
=
None
,
resume
=
False
)
-
> google
.
cloud
.
aiplatform
.
metadata
.
experiment_run_resource
.
ExperimentRun
Start a run to current session.
aiplatform.init(experiment='my-experiment')
aiplatform.start_run('my-run')
aiplatform.log_params({'learning_rate':0.1})
Use as context manager. Run will be ended on context exit:
aiplatform.init(experiment='my-experiment')
with aiplatform.start_run('my-run') as my_run:
my_run.log_params({'learning_rate':0.1})
Resume a previously started run:
aiplatform.init(experiment='my-experiment')
with aiplatform.start_run('my-run', resume=True) as my_run:
my_run.log_params({'learning_rate':0.1})
run
Required. Name of the run to assign current session with.
resume
Whether to resume this run. If False a new run will be created.

