- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
ExplanationMetadata
(
mapping
=
None
,
*
,
ignore_unknown_fields
=
False
,
**
kwargs
)
Metadata describing the Model's input and output for explanation.
Attributes
Name | Description |
inputs | Sequence[ google.cloud.aiplatform_v1.types.ExplanationMetadata.InputsEntry
]
Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs . The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance . |
outputs | Sequence[ google.cloud.aiplatform_v1.types.ExplanationMetadata.OutputsEntry
]
Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed. |
feature_attributions_schema_uri | str
Points to a YAML file stored on Google Cloud Storage describing the format of the [feature attributions][google.cloud.aiplatform.v1.Attribution.feature_attributions]. The schema is defined as an OpenAPI 3.0.2 `Schema Object |
Inheritance
builtins.object > proto.message.Message > ExplanationMetadataClasses
InputMetadata
InputMetadata
(
mapping
=
None
,
*
,
ignore_unknown_fields
=
False
,
**
kwargs
)
Metadata of the input of a feature.
Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
InputsEntry
InputsEntry
(
mapping
=
None
,
*
,
ignore_unknown_fields
=
False
,
**
kwargs
)
The abstract base class for a message.
Name | Description |
kwargs | dict
Keys and values corresponding to the fields of the message. |
mapping | Union[dict, `.Message`]
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields | Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
OutputMetadata
OutputMetadata
(
mapping
=
None
,
*
,
ignore_unknown_fields
=
False
,
**
kwargs
)
Metadata of the prediction output to be explained.
This message has oneof
_ fields (mutually exclusive fields).
For each oneof, at most one member field can be set at the same time.
Setting any member of the oneof automatically clears all other
members.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
OutputsEntry
OutputsEntry
(
mapping
=
None
,
*
,
ignore_unknown_fields
=
False
,
**
kwargs
)
The abstract base class for a message.
Name | Description |
kwargs | dict
Keys and values corresponding to the fields of the message. |
mapping | Union[dict, `.Message`]
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields | Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |