- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
API documentation for agent_engines
package.
Classes
AG2Agent
An AG2 Agent.
AdkApp
An ADK Application.
AgentEngine
Represents a Vertex AI Agent Engine resource.
AsyncQueryable
Protocol for Agent Engines that can be queried asynchronously.
AsyncStreamQueryable
Protocol for Agent Engines that can stream responses asynchronously.
Cloneable
Protocol for Agent Engines that can be cloned.
LangchainAgent
A Langchain Agent.
See https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/develop for details.
LanggraphAgent
A LangGraph Agent.
ModuleAgent
Agent that is defined by a module and an agent name.
This agent is instantiated by importing a module and instantiating an agent from that module. It also allows to register operations that are defined in the agent.
OperationRegistrable
Protocol for agents that have registered operations.
Queryable
Protocol for Agent Engines that can be queried.
StreamQueryable
Protocol for Agent Engines that can stream responses.
Packages Functions
create
create
(
agent_engine
:
typing
.
Union
[
None
,
vertexai
.
agent_engines
.
AsyncQueryable
,
vertexai
.
agent_engines
.
AsyncStreamQueryable
,
vertexai
.
agent_engines
.
_agent_engines
.
BidiStreamQueryable
,
vertexai
.
agent_engines
.
OperationRegistrable
,
vertexai
.
agent_engines
.
Queryable
,
vertexai
.
agent_engines
.
StreamQueryable
,
]
=
None
,
*
,
requirements
:
typing
.
Optional
[
typing
.
Union
[
str
,
typing
.
Sequence
[
str
]]]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
,
description
:
typing
.
Optional
[
str
]
=
None
,
gcs_dir_name
:
typing
.
Optional
[
str
]
=
None
,
extra_packages
:
typing
.
Optional
[
typing
.
Sequence
[
str
]]
=
None
,
env_vars
:
typing
.
Optional
[
typing
.
Union
[
typing
.
Sequence
[
str
],
typing
.
Dict
[
str
,
typing
.
Union
[
str
,
google
.
cloud
.
aiplatform_v1
.
types
.
env_var
.
SecretRef
],
],
]
]
=
None
,
build_options
:
typing
.
Optional
[
typing
.
Dict
[
str
,
typing
.
Sequence
[
str
]]]
=
None
,
service_account
:
typing
.
Optional
[
str
]
=
None
,
psc_interface_config
:
typing
.
Optional
[
google
.
cloud
.
aiplatform_v1
.
types
.
service_networking
.
PscInterfaceConfig
]
=
None
,
min_instances
:
typing
.
Optional
[
int
]
=
None
,
max_instances
:
typing
.
Optional
[
int
]
=
None
,
resource_limits
:
typing
.
Optional
[
typing
.
Dict
[
str
,
str
]]
=
None
,
container_concurrency
:
typing
.
Optional
[
int
]
=
None
,
encryption_spec
:
typing
.
Optional
[
google
.
cloud
.
aiplatform_v1
.
types
.
encryption_spec
.
EncryptionSpec
]
=
None
)
-
> vertexai
.
agent_engines
.
AgentEngine
Creates a new Agent Engine.
The Agent Engine will be an instance of the agent_engine
that
was passed in, running remotely on Vertex AI.
Sample src_dir
contents (e.g. ./user_src_dir
):
user_src_dir/
|-- main.py
|-- requirements.txt
|-- user_code/
| |-- utils.py
| |-- ...
|-- installation_scripts/
| |-- install_package.sh
| |-- ...
|-- ...
To build an Agent Engine with the above files, run:
remote_agent = agent_engines.create(
agent_engine=local_agent,
requirements=[
# I.e. the PyPI dependencies listed in requirements.txt
"google-cloud-aiplatform==1.25.0",
"langchain==0.0.242",
...
],
extra_packages=[
"./user_src_dir/main.py", # a single file
"./user_src_dir/user_code", # a directory
...
],
build_options={
"installation": [
"./user_src_dir/installation_scripts/install_package.sh",
...
],
},
)
agent_engine
AgentEngineInterface
Required. The Agent Engine to be created.
requirements
Union[str, Sequence[str]]
Optional. The set of PyPI dependencies needed. It can either be the path to a single file (requirements.txt), or an ordered list of strings corresponding to each line of the requirements file.
display_name
str
Optional. The user-defined name of the Agent Engine. The name can be up to 128 characters long and can comprise any UTF-8 character.
description
str
Optional. The description of the Agent Engine.
gcs_dir_name
str
Optional. The GCS bucket directory under staging_bucket
to use for staging the artifacts needed.
extra_packages
Sequence[str]
Optional. The set of extra user-provided packages (if any).
env_vars
Union[Sequence[str], Dict[str, Union[str, SecretRef]]]
Optional. The environment variables to be set when running the Agent Engine. If it is a list of strings, each string should be a valid key to os.environ
. If it is a dictionary, the keys are the environment variable names, and the values are the corresponding values.
build_options
Dict[str, Sequence[str]]
Optional. The build options for the Agent Engine. This includes options such as installation scripts.
service_account
str
Optional. The service account to be used for the Agent Engine. If not specified, the default reasoning engine service agent service account will be used.
psc_interface_config
PscInterfaceConfig
Optional. The PSC interface config for the Agent Engine. If not specified, the default PSC interface config will be used.
min_instances
int
Optional. The minimum number of instances to run the Agent Engine. If not specified, the default value will be used.
max_instances
int
Optional. The maximum number of instances to run the Agent Engine. If not specified, the default value will be used.
resource_limits
Dict[str, str]
Optional. The resource limits for the Agent Engine. If not specified, the default value will be used.
container_concurrency
int
Optional. The container concurrency for the Agent Engine. If not specified, the default value will be used.
encryption_spec
EncryptionSpec
Optional. The encryption spec for the Agent Engine. If not specified, the default encryption spec will be used.
delete
delete
(
resource_name
:
str
,
*
,
force
:
bool
=
False
,
**
kwargs
)
-
> None
Delete an Agent Engine resource.
resource_name
str
Required. The name of the Agent Engine to be deleted. Format: projects/{project}/locations/{location}/reasoningEngines/{resource_id}
force
bool
Optional. If set to True, child resources will also be deleted. Otherwise, the request will fail with FAILED_PRECONDITION error when the Agent Engine has undeleted child resources. Defaults to False.
\*\*kwargs
dict[str, Any]
Optional. Additional keyword arguments to pass to the delete_reasoning_engine method.
get
get
(
resource_name
:
str
)
-
> vertexai
.
agent_engines
.
AgentEngine
Retrieves an Agent Engine resource.
resource_name
str
Required. A fully-qualified resource name or ID such as "projects/123/locations/us-central1/reasoningEngines/456" or "456" when project and location are initialized or passed.
list
list
(
*
,
filter
:
str
=
""
)
-
> typing
.
Iterable
[
vertexai
.
agent_engines
.
AgentEngine
]
List all instances of Agent Engine matching the filter.
Example Usage:
import vertexai
from vertexai import agent_engines
<xref uid="vertexai.init">vertexai.init</xref>(project="my_project", location="us-central1") agent_engines
. list
(filter='display_name="My Custom Agent"')
filter
str
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.
update
update
(
resource_name
:
str
,
*
,
agent_engine
:
typing
.
Optional
[
typing
.
Union
[
vertexai
.
agent_engines
.
Queryable
,
vertexai
.
agent_engines
.
OperationRegistrable
,
]
]
=
None
,
requirements
:
typing
.
Optional
[
typing
.
Union
[
str
,
typing
.
Sequence
[
str
]]]
=
None
,
display_name
:
typing
.
Optional
[
str
]
=
None
,
description
:
typing
.
Optional
[
str
]
=
None
,
gcs_dir_name
:
typing
.
Optional
[
str
]
=
None
,
extra_packages
:
typing
.
Optional
[
typing
.
Sequence
[
str
]]
=
None
,
env_vars
:
typing
.
Optional
[
typing
.
Union
[
typing
.
Sequence
[
str
],
typing
.
Dict
[
str
,
typing
.
Union
[
str
,
google
.
cloud
.
aiplatform_v1
.
types
.
env_var
.
SecretRef
],
],
]
]
=
None
,
build_options
:
typing
.
Optional
[
typing
.
Dict
[
str
,
typing
.
Sequence
[
str
]]]
=
None
,
service_account
:
typing
.
Optional
[
str
]
=
None
,
psc_interface_config
:
typing
.
Optional
[
google
.
cloud
.
aiplatform_v1
.
types
.
service_networking
.
PscInterfaceConfig
]
=
None
,
min_instances
:
typing
.
Optional
[
int
]
=
None
,
max_instances
:
typing
.
Optional
[
int
]
=
None
,
resource_limits
:
typing
.
Optional
[
typing
.
Dict
[
str
,
str
]]
=
None
,
container_concurrency
:
typing
.
Optional
[
int
]
=
None
,
encryption_spec
:
typing
.
Optional
[
google
.
cloud
.
aiplatform_v1
.
types
.
encryption_spec
.
EncryptionSpec
]
=
None
)
-
> vertexai
.
agent_engines
.
AgentEngine
Updates an existing Agent Engine.
This method updates the configuration of a deployed Agent Engine, identified
by its resource name. Unlike the create
function which requires an agent_engine
object, all arguments in this method are optional. This
method allows you to modify individual aspects of the configuration by
providing any of the optional arguments.
resource_name
str
Required. The name of the Agent Engine to be updated. Format: projects/{project}/locations/{location}/reasoningEngines/{resource_id}
.
agent_engine
AgentEngineInterface
Optional. The instance to be used as the updated Agent Engine. If it is not specified, the existing instance will be used.
requirements
Union[str, Sequence[str]]
Optional. The set of PyPI dependencies needed. It can either be the path to a single file (requirements.txt), or an ordered list of strings corresponding to each line of the requirements file. If it is not specified, the existing requirements will be used. If it is set to an empty string or list, the existing requirements will be removed.
display_name
str
Optional. The user-defined name of the Agent Engine. The name can be up to 128 characters long and can comprise any UTF-8 character.
description
str
Optional. The description of the Agent Engine.
gcs_dir_name
str
Optional. The GCS bucket directory under staging_bucket
to use for staging the artifacts needed.
extra_packages
Sequence[str]
Optional. The set of extra user-provided packages (if any). If it is not specified, the existing extra packages will be used. If it is set to an empty list, the existing extra packages will be removed.
env_vars
Union[Sequence[str], Dict[str, Union[str, SecretRef]]]
Optional. The environment variables to be set when running the Agent Engine. If it is a list of strings, each string should be a valid key to os.environ
. If it is a dictionary, the keys are the environment variable names, and the values are the corresponding values.
build_options
Dict[str, Sequence[str]]
Optional. The build options for the Agent Engine. This includes options such as installation scripts.
service_account
str
Optional. The service account to be used for the Agent Engine. If not specified, the default reasoning engine service agent service account will be used.
min_instances
int
Optional. The minimum number of instances to run the Agent Engine. If not specified, the default value will be used.
max_instances
int
Optional. The maximum number of instances to run the Agent Engine. If not specified, the default value will be used.
resource_limits
Dict[str, str]
Optional. The resource limits for the Agent Engine. If not specified, the default value will be used.
container_concurrency
int
Optional. The container concurrency for the Agent Engine. If not specified, the default value will be used.
encryption_spec
EncryptionSpec
Optional. The encryption spec for the Agent Engine. If not specified, the default encryption spec will be used.

