Expand the content of an image using outpaint

This page describes outpainting. Outpainting lets you use Imagen to expand the content of an image to a larger area or area with different dimensions.

Outpainting example

Outpainting is a mask-based editing method that lets you expand the content of a base image to fit a larger or differently sized mask canvas.

sample base image
Original image with image padding to match mask image (target) size.
Image source: Kari Shea on Unsplash .
sample mask image
Mask image the dimensions of the target output, with the original image pixel dimensions and location marked.
sample output image
Outpainting output image (no prompt).

View Imagen for Editing and Customization model card

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project .

  4. Enable the Vertex AI API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project .

  7. Enable the Vertex AI API.

    Enable the API

  8. Set up authentication for your environment.

    Select the tab for how you plan to use the samples on this page:

    Console

    When you use the Google Cloud console to access Google Cloud services and APIs, you don't need to set up authentication.

    Java

    To use the Java samples on this page in a local development environment, install and initialize the gcloud CLI, and then set up Application Default Credentials with your user credentials.

      Install the Google Cloud CLI.

      If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

      If you're using a local shell, then create local authentication credentials for your user account:

      gcloud  
      auth  
      application-default  
      login

      You don't need to do this if you're using Cloud Shell.

      If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity .

    For more information, see Set up ADC for a local development environment in the Google Cloud authentication documentation.

    Node.js

    To use the Node.js samples on this page in a local development environment, install and initialize the gcloud CLI, and then set up Application Default Credentials with your user credentials.

      Install the Google Cloud CLI.

      If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

      If you're using a local shell, then create local authentication credentials for your user account:

      gcloud  
      auth  
      application-default  
      login

      You don't need to do this if you're using Cloud Shell.

      If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity .

    For more information, see Set up ADC for a local development environment in the Google Cloud authentication documentation.

    Python

    To use the Python samples on this page in a local development environment, install and initialize the gcloud CLI, and then set up Application Default Credentials with your user credentials.

      Install the Google Cloud CLI.

      If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

      If you're using a local shell, then create local authentication credentials for your user account:

      gcloud  
      auth  
      application-default  
      login

      You don't need to do this if you're using Cloud Shell.

      If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity .

    For more information, see Set up ADC for a local development environment in the Google Cloud authentication documentation.

    REST

    To use the REST API samples on this page in a local development environment, you use the credentials you provide to the gcloud CLI.

      Install the Google Cloud CLI.

      If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

    For more information, see Authenticate for using REST in the Google Cloud authentication documentation.

Expand the content of an image

Use the following code samples to expand the content of an existing image.

Imagen 3

Use the following samples to send an outpainting request using the Imagen 3 model.

Console

  1. In the Google Cloud console, go to the Vertex AI > Media Studio page.

    Go to Media Studio

  2. Click Upload . In the displayed file dialog, select a file to upload.
  3. Click Outpaint .
  4. In the Outpaint menu, select one of the predefined aspect ratios for your final image, or click Custom to define custom dimensions for your final image.
  5. In the editing toolbar, select the placement of your image:
    • Left align :
    • Horizontal center align :
    • Right align :
    • Top align :
    • Vertical center align :
    • Bottom align :
  6. Optional: In the Parameters panel, adjust the following options:
    • Model : the Imagen model to use
    • Number of results : the number of result to generate
    • Negative prompt : items to avoid generating
  7. In the prompt field, enter a prompt to modify the image.
  8. Click Generate .

Python

Install

pip install --upgrade google-genai

To learn more, see the SDK reference documentation .

Set environment variables to use the Gen AI SDK with Vertex AI:

 # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values 
 # with appropriate values for your project. 
 export 
  
 GOOGLE_CLOUD_PROJECT 
 = 
 GOOGLE_CLOUD_PROJECT 
 export 
  
 GOOGLE_CLOUD_LOCATION 
 = 
 us-central1 
 export 
  
 GOOGLE_GENAI_USE_VERTEXAI 
 = 
True
  from 
  
 google 
  
 import 
 genai 
 from 
  
 google.genai.types 
  
 import 
 ( 
 RawReferenceImage 
 , 
 MaskReferenceImage 
 , 
 MaskReferenceConfig 
 , 
 EditImageConfig 
 , 
 ) 
 client 
 = 
 genai 
 . 
 Client 
 () 
 # TODO(developer): Update and un-comment below line 
 # output_file = "output-image.png" 
 raw_ref 
 = 
 RawReferenceImage 
 ( 
 reference_image 
 = 
 Image 
 . 
 from_file 
 ( 
 location 
 = 
 "test_resources/living_room.png" 
 ), 
 reference_id 
 = 
 0 
 , 
 ) 
 mask_ref 
 = 
 MaskReferenceImage 
 ( 
 reference_id 
 = 
 1 
 , 
 reference_image 
 = 
 Image 
 . 
 from_file 
 ( 
 location 
 = 
 "test_resources/living_room_mask.png" 
 ), 
 config 
 = 
 MaskReferenceConfig 
 ( 
 mask_mode 
 = 
 "MASK_MODE_USER_PROVIDED" 
 , 
 mask_dilation 
 = 
 0.03 
 , 
 ), 
 ) 
 image 
 = 
 client 
 . 
 models 
 . 
 edit_image 
 ( 
 model 
 = 
 "imagen-3.0-capability-001" 
 , 
 prompt 
 = 
 "A chandelier hanging from the ceiling" 
 , 
 reference_images 
 = 
 [ 
 raw_ref 
 , 
 mask_ref 
 ], 
 config 
 = 
 EditImageConfig 
 ( 
 edit_mode 
 = 
 "EDIT_MODE_OUTPAINT" 
 , 
 ), 
 ) 
 image 
 . 
 generated_images 
 [ 
 0 
 ] 
 . 
 image 
 . 
 save 
 ( 
 output_file 
 ) 
 print 
 ( 
 f 
 "Created output image using 
 { 
 len 
 ( 
 image 
 . 
 generated_images 
 [ 
 0 
 ] 
 . 
 image 
 . 
 image_bytes 
 ) 
 } 
 bytes" 
 ) 
 # Example response: 
 # Created output image using 1234567 bytes 
 

REST

For more information, see the Edit images API reference.

Before using any of the request data, make the following replacements:

  • PROJECT_ID : Your Google Cloud project ID .
  • LOCATION : Your project's region. For example, us-central1 , europe-west2 , or asia-northeast3 . For a list of available regions, see Generative AI on Vertex AI locations .
  • prompt : For image outpainting you can provide an empty string to create the edited images. If you choose to provide a prompt, use a description of the masked area for best results. For example, " a blue sky " instead of " insert a blue sky ".
  • referenceType : A ReferenceImage is an image that provides additional context for image editing. A normal RGB raw reference image ( REFERENCE_TYPE_RAW ) is required for editing use cases. At most one raw reference image may exist in one request. The output image has the same height and width as raw reference image. A mask reference image ( REFERENCE_TYPE_MASK ) is required for masked editing use cases. If a raw reference image is present, the mask image has to be the same height and width as the raw reference image. If the mask reference image is empty and maskMode is not set to MASK_MODE_USER_PROVIDED , the mask is computed based on the raw reference image.
  • B64_BASE_IMAGE : The base image to edit or upscale. The image must be specified as a base64-encoded byte string. Size limit: 10 MB.
  • B64_OUTPAINTING_MASK : The black and white image you want to use as a mask layer to edit the original image. The mask should be same resolution as input image. The output image will be the same resolution as the input image. This mask image must be specified as a base64-encoded byte string. Size limit: 10 MB.
  • MASK_DILATION - float. The percentage of image width to dilate this mask by. A value of 0.03 is recommended for outpainting. Setting "dilation": 0.0 might result in obvious borders at the extension point, or might cause a white border effect.
  • EDIT_STEPS - integer. The number of sampling steps for the base model. For outpainting, start at 35 steps. Increase steps if the quality doesn't meet your requirements.
  • EDIT_IMAGE_COUNT - The number of edited images. Accepted integer values: 1-4. Default value: 4.

HTTP method and URL:

POST https:// LOCATION 
-aiplatform.googleapis.com/v1/projects/ PROJECT_ID 
/locations/ LOCATION 
/publishers/google/models/imagen-3.0-capability-001:predict

Request JSON body:

{
  "instances": [
    {
      "prompt": "",
      "referenceImages": [
        {
          "referenceType": "REFERENCE_TYPE_RAW",
          "referenceId": 1,
          "referenceImage": {
            "bytesBase64Encoded": " B64_BASE_IMAGE 
"
          }
        },
        {
          "referenceType": "REFERENCE_TYPE_MASK",
          "referenceId": 2,
          "referenceImage": {
            "bytesBase64Encoded": " B64_OUTPAINTING_MASK 
"
          },
          "maskImageConfig": {
            "maskMode": "MASK_MODE_USER_PROVIDED",
            "dilation": MASK_DILATION 
}
        }
      ]
    }
  ],
  "parameters": {
    "editConfig": {
      "baseSteps": EDIT_STEPS 
}, "editMode": "EDIT_MODE_OUTPAINT","sampleCount": EDIT_IMAGE_COUNT 
}
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json , and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https:// LOCATION -aiplatform.googleapis.com/v1/projects/ PROJECT_ID /locations/ LOCATION /publishers/google/models/imagen-3.0-capability-001:predict"

PowerShell

Save the request body in a file named request.json , and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https:// LOCATION -aiplatform.googleapis.com/v1/projects/ PROJECT_ID /locations/ LOCATION /publishers/google/models/imagen-3.0-capability-001:predict" | Select-Object -Expand Content
The following sample response is for a request with "sampleCount": 2 . The response returns two prediction objects, with the generated image bytes base64-encoded.
{
  "predictions": [
    {
      "bytesBase64Encoded": " BASE64_IMG_BYTES 
",
      "mimeType": "image/png"
    },
    {
      "mimeType": "image/png",
      "bytesBase64Encoded": " BASE64_IMG_BYTES 
"
    }
  ]
}

Imagen 2

Use the following samples to send an outpainting request using the Imagen 2 model.

Console

  1. In the Google Cloud console, go to the Vertex AI > Media Studio page.

    Go to Media Studio

  2. In the lower task panel, click Edit image .

  3. Click Upload to select your locally stored product image to edit.

  4. In the editing toolbar, click Outpaint .

  5. Select one of the predefined aspect ratios for your final image, or click Custom to define custom dimensions for your final image.

  6. Optional. In the editing toolbar, select the horizontal placement ( left, horizontal center, or right align) and vertical placement ( top, vertical center, or bottom align) of your original image in the canvas of the image to be generated.

  7. Optional. In the Parameters panel, adjust the Number of results or other parameters.

  8. Click Generate .

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python . For more information, see the Python API reference documentation .

  import 
  
 vertexai 
 from 
  
 vertexai.preview.vision_models 
  
 import 
 Image 
 , 
 ImageGenerationModel 
 # TODO(developer): Update and un-comment below lines 
 # PROJECT_ID = "your-project-id" 
 # input_file = "input-image.png" 
 # mask_file = "mask-image.png" 
 # output_file = "output-image.png" 
 # prompt = "" # The optional text prompt describing what you want to see inserted. 
 vertexai 
 . 
 init 
 ( 
 project 
 = 
 PROJECT_ID 
 , 
 location 
 = 
 "us-central1" 
 ) 
 model 
 = 
 ImageGenerationModel 
 . 
 from_pretrained 
 ( 
 "imagegeneration@006" 
 ) 
 base_img 
 = 
 Image 
 . 
 load_from_file 
 ( 
 location 
 = 
 input_file 
 ) 
 mask_img 
 = 
 Image 
 . 
 load_from_file 
 ( 
 location 
 = 
 mask_file 
 ) 
 images 
 = 
 model 
 . 
 edit_image 
 ( 
 base_image 
 = 
 base_img 
 , 
 mask 
 = 
 mask_img 
 , 
 prompt 
 = 
 prompt 
 , 
 edit_mode 
 = 
 "outpainting" 
 , 
 ) 
 images 
 [ 
 0 
 ] 
 . 
 save 
 ( 
 location 
 = 
 output_file 
 , 
 include_generation_parameters 
 = 
 False 
 ) 
 # Optional. View the edited image in a notebook. 
 # images[0].show() 
 print 
 ( 
 f 
 "Created output image using 
 { 
 len 
 ( 
 images 
 [ 
 0 
 ] 
 . 
 _image_bytes 
 ) 
 } 
 bytes" 
 ) 
 # Example response: 
 # Created output image using 1234567 bytes 
 

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID : Your Google Cloud project ID .
  • LOCATION : Your project's region. For example, us-central1 , europe-west2 , or asia-northeast3 . For a list of available regions, see Generative AI on Vertex AI locations .
  • prompt : For image outpainting you can provide an empty string to create the edited images.
  • B64_BASE_IMAGE : The base image to edit or upscale. The image must be specified as a base64-encoded byte string. Size limit: 10 MB.
  • B64_OUTPAINTING_MASK : The black and white image you want to use as a mask layer to edit the original image. The mask should be same resolution as input image. The output image will be the same resolution as the input image. This mask image must be specified as a base64-encoded byte string. Size limit: 10 MB.
  • EDIT_IMAGE_COUNT : The number of edited images. Default value: 4.

HTTP method and URL:

POST https:// LOCATION 
-aiplatform.googleapis.com/v1/projects/ PROJECT_ID 
/locations/ LOCATION 
/publishers/google/models/imagegeneration@006:predict

Request JSON body:

{
  "instances": [
    {
      "prompt": "",
      "image": {
          "bytesBase64Encoded": " B64_BASE_IMAGE 
"
      },
      "mask": {
        "image": {
          "bytesBase64Encoded": " B64_OUTPAINTING_MASK 
"
        }
      }
    }
  ],
  "parameters": {
    "sampleCount": EDIT_IMAGE_COUNT 
, "editConfig": {
      "editMode": "outpainting"}
  }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json , and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https:// LOCATION -aiplatform.googleapis.com/v1/projects/ PROJECT_ID /locations/ LOCATION /publishers/google/models/imagegeneration@006:predict"

PowerShell

Save the request body in a file named request.json , and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https:// LOCATION -aiplatform.googleapis.com/v1/projects/ PROJECT_ID /locations/ LOCATION /publishers/google/models/imagegeneration@006:predict" | Select-Object -Expand Content
The following sample response is for a request with "sampleCount": 2 . The response returns two prediction objects, with the generated image bytes base64-encoded.
{
  "predictions": [
    {
      "bytesBase64Encoded": " BASE64_IMG_BYTES 
",
      "mimeType": "image/png"
    },
    {
      "mimeType": "image/png",
      "bytesBase64Encoded": " BASE64_IMG_BYTES 
"
    }
  ]
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

In this sample, you specify the model as part of an EndpointName . The EndpointName is passed to the predict method which is called on a PredictionServiceClient . The service returns an edited version of the image, which is then saved locally.

  import 
  
 com.google.api.gax.rpc. ApiException 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. EndpointName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictResponse 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceSettings 
 
 ; 
 import 
  
 com.google.gson.Gson 
 ; 
 import 
  
 com.google.protobuf. InvalidProtocolBufferException 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 com.google.protobuf.util. JsonFormat 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.nio.file.Files 
 ; 
 import 
  
 java.nio.file.Path 
 ; 
 import 
  
 java.nio.file.Paths 
 ; 
 import 
  
 java.util.Base64 
 ; 
 import 
  
 java.util.Collections 
 ; 
 import 
  
 java.util.HashMap 
 ; 
 import 
  
 java.util.Map 
 ; 
 public 
  
 class 
 EditImageOutpaintingMaskSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 projectId 
  
 = 
  
 "my-project-id" 
 ; 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
 String 
  
 inputPath 
  
 = 
  
 "/path/to/my-input.png" 
 ; 
  
 String 
  
 maskPath 
  
 = 
  
 "/path/to/my-mask.png" 
 ; 
  
 String 
  
 prompt 
  
 = 
  
 "" 
 ; 
  
 // The optional text prompt describing what you want to see inserted. 
  
 editImageOutpaintingMask 
 ( 
 projectId 
 , 
  
 location 
 , 
  
 inputPath 
 , 
  
 maskPath 
 , 
  
 prompt 
 ); 
  
 } 
  
 // Edit an image using a mask file. Outpainting lets you expand the content of a base image to fit 
  
 // a larger or differently sized mask canvas. 
  
 public 
  
 static 
  
  PredictResponse 
 
  
 editImageOutpaintingMask 
 ( 
  
 String 
  
 projectId 
 , 
  
 String 
  
 location 
 , 
  
 String 
  
 inputPath 
 , 
  
 String 
  
 maskPath 
 , 
  
 String 
  
 prompt 
 ) 
  
 throws 
  
  ApiException 
 
 , 
  
 IOException 
  
 { 
  
 final 
  
 String 
  
 endpoint 
  
 = 
  
 String 
 . 
 format 
 ( 
 "%s-aiplatform.googleapis.com:443" 
 , 
  
 location 
 ); 
  
  PredictionServiceSettings 
 
  
 predictionServiceSettings 
  
 = 
  
  PredictionServiceSettings 
 
 . 
 newBuilder 
 (). 
 setEndpoint 
 ( 
 endpoint 
 ). 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
 try 
  
 ( 
  PredictionServiceClient 
 
  
 predictionServiceClient 
  
 = 
  
  PredictionServiceClient 
 
 . 
 create 
 ( 
 predictionServiceSettings 
 )) 
  
 { 
  
 final 
  
  EndpointName 
 
  
 endpointName 
  
 = 
  
  EndpointName 
 
 . 
  ofProjectLocationPublisherModelName 
 
 ( 
  
 projectId 
 , 
  
 location 
 , 
  
 "google" 
 , 
  
 "imagegeneration@006" 
 ); 
  
 // Encode image and mask to Base64 
  
 String 
  
 imageBase64 
  
 = 
  
 Base64 
 . 
 getEncoder 
 (). 
 encodeToString 
 ( 
 Files 
 . 
 readAllBytes 
 ( 
 Paths 
 . 
 get 
 ( 
 inputPath 
 ))); 
  
 String 
  
 maskBase64 
  
 = 
  
 Base64 
 . 
 getEncoder 
 (). 
 encodeToString 
 ( 
 Files 
 . 
 readAllBytes 
 ( 
 Paths 
 . 
 get 
 ( 
 maskPath 
 ))); 
  
 // Create the image and image mask maps 
  
 Map<String 
 , 
  
 String 
>  
 imageMap 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 imageMap 
 . 
 put 
 ( 
 "bytesBase64Encoded" 
 , 
  
 imageBase64 
 ); 
  
 Map<String 
 , 
  
 String 
>  
 maskMap 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 maskMap 
 . 
 put 
 ( 
 "bytesBase64Encoded" 
 , 
  
 maskBase64 
 ); 
  
 Map<String 
 , 
  
 Map 
>  
 imageMaskMap 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 imageMaskMap 
 . 
 put 
 ( 
 "image" 
 , 
  
 maskMap 
 ); 
  
 Map<String 
 , 
  
 Object 
>  
 instancesMap 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 instancesMap 
 . 
 put 
 ( 
 "prompt" 
 , 
  
 prompt 
 ); 
  
 // [ "prompt", "<my-prompt>" ] 
  
 instancesMap 
 . 
 put 
 ( 
  
 "image" 
 , 
  
 imageMap 
 ); 
  
 // [ "image", [ "bytesBase64Encoded", "iVBORw0KGgo...==" ] ] 
  
 instancesMap 
 . 
 put 
 ( 
  
 "mask" 
 , 
  
 imageMaskMap 
 ); 
  
 // [ "mask", [ "image", [ "bytesBase64Encoded", "iJKDF0KGpl...==" ] ] ] 
  
 instancesMap 
 . 
 put 
 ( 
 "editMode" 
 , 
  
 "outpainting" 
 ); 
  
 // [ "editMode", "outpainting" ] 
  
  Value 
 
  
 instances 
  
 = 
  
 mapToValue 
 ( 
 instancesMap 
 ); 
  
 // Optional parameters 
  
 Map<String 
 , 
  
 Object 
>  
 paramsMap 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 paramsMap 
 . 
 put 
 ( 
 "sampleCount" 
 , 
  
 1 
 ); 
  
  Value 
 
  
 parameters 
  
 = 
  
 mapToValue 
 ( 
 paramsMap 
 ); 
  
  PredictResponse 
 
  
 predictResponse 
  
 = 
  
 predictionServiceClient 
 . 
 predict 
 ( 
  
 endpointName 
 , 
  
 Collections 
 . 
 singletonList 
 ( 
 instances 
 ), 
  
 parameters 
 ); 
  
 for 
  
 ( 
  Value 
 
  
 prediction 
  
 : 
  
 predictResponse 
 . 
  getPredictionsList 
 
 ()) 
  
 { 
  
 Map<String 
 , 
  
 Value 
>  
 fieldsMap 
  
 = 
  
 prediction 
 . 
 getStructValue 
 (). 
 getFieldsMap 
 (); 
  
 if 
  
 ( 
 fieldsMap 
 . 
 containsKey 
 ( 
 "bytesBase64Encoded" 
 )) 
  
 { 
  
 String 
  
 bytesBase64Encoded 
  
 = 
  
 fieldsMap 
 . 
 get 
 ( 
 "bytesBase64Encoded" 
 ). 
 getStringValue 
 (); 
  
 Path 
  
 tmpPath 
  
 = 
  
 Files 
 . 
 createTempFile 
 ( 
 "imagen-" 
 , 
  
 ".png" 
 ); 
  
 Files 
 . 
 write 
 ( 
 tmpPath 
 , 
  
 Base64 
 . 
 getDecoder 
 (). 
 decode 
 ( 
 bytesBase64Encoded 
 )); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Image file written to: %s\n" 
 , 
  
 tmpPath 
 . 
 toUri 
 ()); 
  
 } 
  
 } 
  
 return 
  
 predictResponse 
 ; 
  
 } 
  
 } 
  
 private 
  
 static 
  
  Value 
 
  
 mapToValue 
 ( 
 Map<String 
 , 
  
 Object 
>  
 map 
 ) 
  
 throws 
  
  InvalidProtocolBufferException 
 
  
 { 
  
 Gson 
  
 gson 
  
 = 
  
 new 
  
 Gson 
 (); 
  
 String 
  
 json 
  
 = 
  
 gson 
 . 
 toJson 
 ( 
 map 
 ); 
  
  Value 
 
 . 
 Builder 
  
 builder 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 json 
 , 
  
 builder 
 ); 
  
 return 
  
 builder 
 . 
 build 
 (); 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

In this sample, you call the predict method on a PredictionServiceClient . The service generates images which are then saved locally.
  /** 
 * TODO(developer): Update these variables before running the sample. 
 */ 
 const 
  
 projectId 
  
 = 
  
 process 
 . 
 env 
 . 
 CAIP_PROJECT_ID 
 ; 
 const 
  
 location 
  
 = 
  
 'us-central1' 
 ; 
 const 
  
 inputFile 
  
 = 
  
 'resources/roller_skaters.png' 
 ; 
 const 
  
 maskFile 
  
 = 
  
 'resources/roller_skaters_mask.png' 
 ; 
 const 
  
 prompt 
  
 = 
  
 'city with skyscrapers' 
 ; 
 const 
  
 aiplatform 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 // Imports the Google Cloud Prediction Service Client library 
 const 
  
 { 
 PredictionServiceClient 
 } 
  
 = 
  
 aiplatform 
 . 
 v1 
 ; 
 // Import the helper module for converting arbitrary protobuf.Value objects 
 const 
  
 { 
 helpers 
 } 
  
 = 
  
 aiplatform 
 ; 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 ` 
 ${ 
 location 
 } 
 -aiplatform.googleapis.com` 
 , 
 }; 
 // Instantiates a client 
 const 
  
 predictionServiceClient 
  
 = 
  
 new 
  
  PredictionServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 editImageOutpaintingMask 
 () 
  
 { 
  
 const 
  
 fs 
  
 = 
  
 require 
 ( 
 'fs' 
 ); 
  
 const 
  
 util 
  
 = 
  
 require 
 ( 
 'util' 
 ); 
  
 // Configure the parent resource 
  
 const 
  
 endpoint 
  
 = 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /locations/ 
 ${ 
 location 
 } 
 /publishers/google/models/imagegeneration@006` 
 ; 
  
 const 
  
 imageFile 
  
 = 
  
 fs 
 . 
 readFileSync 
 ( 
 inputFile 
 ); 
  
 // Convert the image data to a Buffer and base64 encode it. 
  
 const 
  
 encodedImage 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
 imageFile 
 ). 
 toString 
 ( 
 'base64' 
 ); 
  
 const 
  
 maskImageFile 
  
 = 
  
 fs 
 . 
 readFileSync 
 ( 
 maskFile 
 ); 
  
 // Convert the image mask data to a Buffer and base64 encode it. 
  
 const 
  
 encodedMask 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
 maskImageFile 
 ). 
 toString 
 ( 
 'base64' 
 ); 
  
 const 
  
 promptObj 
  
 = 
  
 { 
  
 prompt 
 : 
  
 prompt 
 , 
  
 // The optional text prompt describing what you want to see inserted 
  
 editMode 
 : 
  
 'outpainting' 
 , 
  
 image 
 : 
  
 { 
  
 bytesBase64Encoded 
 : 
  
 encodedImage 
 , 
  
 }, 
  
 mask 
 : 
  
 { 
  
 image 
 : 
  
 { 
  
 bytesBase64Encoded 
 : 
  
 encodedMask 
 , 
  
 }, 
  
 }, 
  
 }; 
  
 const 
  
 instanceValue 
  
 = 
  
  helpers 
 
 . 
 toValue 
 ( 
 promptObj 
 ); 
  
 const 
  
 instances 
  
 = 
  
 [ 
 instanceValue 
 ]; 
  
 const 
  
 parameter 
  
 = 
  
 { 
  
 // Optional parameters 
  
 seed 
 : 
  
 100 
 , 
  
 // Controls the strength of the prompt 
  
 // 0-9 (low strength), 10-20 (medium strength), 21+ (high strength) 
  
 guidanceScale 
 : 
  
 21 
 , 
  
 sampleCount 
 : 
  
 1 
 , 
  
 }; 
  
 const 
  
 parameters 
  
 = 
  
  helpers 
 
 . 
 toValue 
 ( 
 parameter 
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
  
 endpoint 
 , 
  
 instances 
 , 
  
 parameters 
 , 
  
 }; 
  
 // Predict request 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 predictionServiceClient 
 . 
 predict 
 ( 
 request 
 ); 
  
 const 
  
 predictions 
  
 = 
  
 response 
 . 
 predictions 
 ; 
  
 if 
  
 ( 
 predictions 
 . 
 length 
  
 === 
  
 0 
 ) 
  
 { 
  
 console 
 . 
 log 
 ( 
  
 'No image was generated. Check the request parameters and prompt.' 
  
 ); 
  
 } 
  
 else 
  
 { 
  
 let 
  
 i 
  
 = 
  
 1 
 ; 
  
 for 
  
 ( 
 const 
  
 prediction 
  
 of 
  
 predictions 
 ) 
  
 { 
  
 const 
  
 buff 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
  
 prediction 
 . 
 structValue 
 . 
 fields 
 . 
 bytesBase64Encoded 
 . 
 stringValue 
 , 
  
 'base64' 
  
 ); 
  
 // Write image content to the output file 
  
 const 
  
 writeFile 
  
 = 
  
 util 
 . 
 promisify 
 ( 
 fs 
 . 
 writeFile 
 ); 
  
 const 
  
 filename 
  
 = 
  
 `output 
 ${ 
 i 
 } 
 .png` 
 ; 
  
 await 
  
 writeFile 
 ( 
 filename 
 , 
  
 buff 
 ); 
  
 console 
 . 
 log 
 ( 
 `Saved image 
 ${ 
 filename 
 } 
 ` 
 ); 
  
 i 
 ++ 
 ; 
  
 } 
  
 } 
 } 
 await 
  
 editImageOutpaintingMask 
 (); 
 

Limitations

The model may produce distorted details if the outpainted image is expanded 200% or more from the original image. As a best practice, we recommend that you add a post-processing step to run alpha blending on outpainted images.

The following code is an example of post-processing:

  parameters 
 = 
 { 
 "editConfig" 
 : 
 { 
 "outpaintingConfig" 
 : 
 { 
 "blendingMode" 
 : 
 "alpha-blending" 
 , 
 "blendingFactor" 
 : 
 0.01 
 , 
 }, 
 }, 
 } 
 

What's next

Read articles about Imagen and other Generative AI on Vertex AI products:

Create a Mobile Website
View Site in Mobile | Classic
Share by: