Face Detectiondetects multiple faces within an image along with the
associated key facial attributes such as emotional state or wearing headwear
.
Specific individual Facial Recognition is not supported.
Try it for yourself
If you're new to Google Cloud, create an account to evaluate how Cloud Vision API performs in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
Try Cloud Vision API freeFace detection requests
Set up your Google Cloud project and authentication
If you have not created a Google Cloud project, do so now. Expand this section for instructions.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project .
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project .
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .
-
To initialize the gcloud CLI, run the following command:
gcloud init
Detect Faces in a local image
You can use the Vision API to perform feature detection on a local image file.
For REST requests, send the contents of the image file as a base64 encoded string in the body of your request.
For gcloud
and client library requests, specify the path to a local image in your
request.
REST
Before using any of the request data, make the following replacements:
- BASE64_ENCODED_IMAGE
: The base64
representation (ASCII string) of your binary image data. This string should look similar to the
following string:
-
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
-
- RESULTS_INT
: (Optional) An integer value of results to
return. If you omit the
"maxResults"
field and its value, the API returns the default value of 10 results. This field does not apply to the following feature types:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
, orCROP_HINTS
. - PROJECT_ID : Your Google Cloud project ID.
HTTP method and URL:
POST https://vision.googleapis.com/v1/images:annotate
Request JSON body:
{ "requests": [ { "image": { "content": " BASE64_ENCODED_IMAGE " }, "features": [ { "maxResults": RESULTS_INT , "type": "FACE_DETECTION" } ] } ] }
To send your request, choose one of these options:
curl
Save the request body in a file named request.json
,
and execute the following command:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID " \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Save the request body in a file named request.json
,
and execute the following command:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = " PROJECT_ID " }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
If the request is successful, the server returns a 200 OK
HTTP status code and the
response in JSON format.
A FACE_DETECTION
response includes bounding boxes for all faces detected, landmarks
detected on the faces (eyes, nose, mouth, etc.), and confidence ratings for face and image
properties (joy, sorrow, anger, surprise, etc.).
Response
{ "responses": [ { "faceAnnotations": [ { "boundingPoly": { "vertices": [ { "x": 1077, "y": 157 }, { "x": 2146, "y": 157 }, { "x": 2146, "y": 1399 }, { "x": 1077, "y": 1399 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 1112, "y": 407 }, { "x": 1946, "y": 407 }, { "x": 1946, "y": 1270 }, { "x": 1112, "y": 1270 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 1368.748, "y": 739.0957, "z": 0.0024604797 } }, { "type": "RIGHT_EYE", "position": { "x": 1660.6105, "y": 751.5844, "z": -117.06496 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 1284.3208, "y": 666.61487, "z": 63.41506 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 1418.9249, "y": 671.49414, "z": -83.82396 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 1556.9579, "y": 672.2199, "z": -139.39935 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1771.4799, "y": 682.65845, "z": -131.66716 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 1479.6194, "y": 741.87305, "z": -114.84635 } }, { "type": "NOSE_TIP", "position": { "x": 1443.3151, "y": 917.5109, "z": -194.49301 } }, { "type": "UPPER_LIP", "position": { "x": 1466.7897, "y": 1025.3483, "z": -130.1202 } }, { "type": "LOWER_LIP", "position": { "x": 1467.2588, "y": 1147.0403, "z": -109.24505 } }, { "type": "MOUTH_LEFT", "position": { "x": 1376.8649, "y": 1066.0856, "z": -6.8136826 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1652, "y": 1079.3108, "z": -106.93649 } }, { "type": "MOUTH_CENTER", "position": { "x": 1485.5554, "y": 1087.2388, "z": -110.68126 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1571.9475, "y": 944.9213, "z": -124.11806 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 1395.2339, "y": 938.12787, "z": -58.072197 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 1468.4205, "y": 968.8732, "z": -132.09975 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 1357.8658, "y": 711.2427, "z": -14.618992 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 1423.6936, "y": 750.4164, "z": -23.540215 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1360.5627, "y": 762.87415, "z": -1.2607727 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 1313.72, "y": 739.443, "z": 50.216393 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1661.6622, "y": 718.6839, "z": -134.17404 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1730.0901, "y": 763.57104, "z": -116.365845 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1660.8823, "y": 777.3474, "z": -120.8635 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 1590.8903, "y": 753.5044, "z": -91.84842 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1345.7522, "y": 640.18243, "z": -27.887913 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1660.5848, "y": 648.36145, "z": -153.73691 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 1274.1006, "y": 826.2645, "z": 422.6642 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 2014.8041, "y": 908.56537, "z": 149.61232 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 1476.2395, "y": 669.9625, "z": -120.59111 } }, { "type": "CHIN_GNATHION", "position": { "x": 1477.3256, "y": 1269.3269, "z": -67.748795 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 1336.8848, "y": 1096.2242, "z": 286.73004 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1863.2197, "y": 1128.6213, "z": 68.90431 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 1317.8549, "y": 940.8025, "z": 50.863163 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1733.4912, "y": 964.073, "z": -112.43947 } } ], "rollAngle": 1.5912293, "panAngle": -22.01964, "tiltAngle": -1.4997566, "detectionConfidence": 0.9310801, "landmarkingConfidence": 0.5775582, "joyLikelihood": "VERY_LIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "VERY_UNLIKELY", "headwearLikelihood": "POSSIBLE" }, { "boundingPoly": { "vertices": [ { "x": 144, "y": 1273 }, { "x": 793, "y": 1273 }, { "x": 793, "y": 1844 }, { "x": 144, "y": 1844 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 181, "y": 1373 }, { "x": 742, "y": 1373 }, { "x": 742, "y": 1844 }, { "x": 181, "y": 1844 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 356.13745, "y": 1635.7034, "z": 0.0045757294 } }, { "type": "RIGHT_EYE", "position": { "x": 557.07324, "y": 1601.1769, "z": -10.258446 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 284.70563, "y": 1599.5238, "z": 28.755493 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 397.47183, "y": 1574.1455, "z": -28.716581 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 484.00983, "y": 1559.5669, "z": -33.509003 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 607.31726, "y": 1551.2396, "z": 11.0225525 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 447.86597, "y": 1603.2458, "z": -40.69277 } }, { "type": "NOSE_TIP", "position": { "x": 463.15356, "y": 1705.7849, "z": -114.36831 } }, { "type": "UPPER_LIP", "position": { "x": 475.02646, "y": 1779.54, "z": -85.219086 } }, { "type": "LOWER_LIP", "position": { "x": 483.2983, "y": 1844.4594, "z": -83.812 } }, { "type": "MOUTH_LEFT", "position": { "x": 391.11206, "y": 1824.9432, "z": -34.578503 } }, { "type": "MOUTH_RIGHT", "position": { "x": 559.85266, "y": 1797.929, "z": -44.700863 } }, { "type": "MOUTH_CENTER", "position": { "x": 478.21106, "y": 1807.5089, "z": -76.46759 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 522.9539, "y": 1717.8636, "z": -51.489075 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 414.95767, "y": 1739.2955, "z": -46.75015 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 468.7361, "y": 1739.5958, "z": -78.64168 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 352.39365, "y": 1618.0576, "z": -7.2005444 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 395.81454, "y": 1629.9379, "z": -2.4021797 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 357.511, "y": 1649.6553, "z": -4.4735374 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 316.1426, "y": 1645.2771, "z": 18.701395 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 553.78973, "y": 1582.3448, "z": -17.07942 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 596.6489, "y": 1599.1897, "z": 4.014868 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 558.60706, "y": 1615.964, "z": -15.077105 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 514.8054, "y": 1605.6407, "z": -7.929638 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 336.4973, "y": 1567.6466, "z": -7.853897 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 542.3708, "y": 1536.191, "z": -19.405855 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 231.38948, "y": 1749.3823, "z": 221.4534 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 712.5644, "y": 1670.4897, "z": 199.4929 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 439.35938, "y": 1561.1454, "z": -36.451645 } }, { "type": "CHIN_GNATHION", "position": { "x": 501.61096, "y": 1942.0133, "z": -75.04764 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 304.9834, "y": 1892.5361, "z": 114.12407 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 684.92535, "y": 1824.337, "z": 96.13425 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 334.5645, "y": 1764.659, "z": -2.0755844 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 609.5919, "y": 1719.6847, "z": -16.861538 } } ], "rollAngle": -8.514851, "panAngle": -3.096844, "tiltAngle": 9.26052, "detectionConfidence": 0.5463216, "landmarkingConfidence": 0.55711126, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "UNLIKELY", "headwearLikelihood": "VERY_UNLIKELY" }, { "boundingPoly": { "vertices": [ { "x": 785, "y": 167 }, { "x": 1100, "y": 167 }, { "x": 1100, "y": 534 }, { "x": 785, "y": 534 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 834, "y": 220 }, { "x": 1101, "y": 220 }, { "x": 1101, "y": 506 }, { "x": 834, "y": 506 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 933.74615, "y": 351.82394, "z": -0.00068986416 } }, { "type": "RIGHT_EYE", "position": { "x": 1005.8836, "y": 329.02396, "z": 43.38338 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 901.93494, "y": 333.3503, "z": -9.714935 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 957.4015, "y": 319.9436, "z": -6.8983736 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 987.50134, "y": 308.46817, "z": 13.108145 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1031.5519, "y": 298.8843, "z": 65.60683 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 979.4568, "y": 336.0551, "z": 3.8077774 } }, { "type": "NOSE_TIP", "position": { "x": 1003.45795, "y": 398.80377, "z": -17.351936 } }, { "type": "UPPER_LIP", "position": { "x": 1000.16614, "y": 432.11664, "z": 5.2740355 } }, { "type": "LOWER_LIP", "position": { "x": 1004.0378, "y": 456.92422, "z": 13.545323 } }, { "type": "MOUTH_LEFT", "position": { "x": 961.922, "y": 448.64325, "z": 11.117096 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1025.2979, "y": 432.70157, "z": 47.89795 } }, { "type": "MOUTH_CENTER", "position": { "x": 1002.51434, "y": 443.3482, "z": 13.021965 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1015.5027, "y": 402.8421, "z": 28.03568 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 969.764, "y": 413.05563, "z": 3.1156778 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 997.8564, "y": 416.98083, "z": 3.3404813 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 930.542, "y": 343.17078, "z": -6.9020395 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 950.7726, "y": 348.11346, "z": 9.216144 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 933.6862, "y": 359.50848, "z": -1.3347243 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 914.83966, "y": 356.1447, "z": -1.4299142 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1006.59766, "y": 319.50406, "z": 38.31219 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1021.45886, "y": 327.68784, "z": 61.100002 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1009.46686, "y": 336.0832, "z": 43.87975 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 991.17535, "y": 331.97632, "z": 34.4881 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 928.40436, "y": 317.13898, "z": -14.411907 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1008.5887, "y": 294.364, "z": 32.917953 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 835.18915, "y": 395.7093, "z": 81.31065 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 1024.4136, "y": 360.64178, "z": 182.02446 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 975.5221, "y": 315.06647, "z": 0.31154716 } }, { "type": "CHIN_GNATHION", "position": { "x": 1010.74097, "y": 503.23572, "z": 29.966637 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 891.86237, "y": 466.7829, "z": 58.84553 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1031.9008, "y": 428.13455, "z": 145.42484 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 929.4197, "y": 418.09122, "z": 4.574672 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1033.7278, "y": 390.5432, "z": 65.6329 } } ], "rollAngle": -12.077273, "panAngle": 27.194477, "tiltAngle": -5.252778, "detectionConfidence": 0.38126788, "landmarkingConfidence": 0.040030442, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "LIKELY", "blurredLikelihood": "VERY_LIKELY", "headwearLikelihood": "VERY_UNLIKELY" } ] } ] }
Go
Before trying this sample, follow the Go setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Go API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
// detectFaces gets faces from the Vision API for an image at the given file path.
func
detectFaces
(
w
io
.
Writer
,
file
string
)
error
{
ctx
:=
context
.
Background
()
client
,
err
:=
vision
.
NewImageAnnotatorClient
(
ctx
)
if
err
!=
nil
{
return
err
}
defer
client
.
Close
()
f
,
err
:=
os
.
Open
(
file
)
if
err
!=
nil
{
return
err
}
defer
f
.
Close
()
image
,
err
:=
vision
.
NewImageFromReader
(
f
)
if
err
!=
nil
{
return
err
}
annotations
,
err
:=
client
.
DetectFaces
(
ctx
,
image
,
nil
,
10
)
if
err
!=
nil
{
return
err
}
if
len
(
annotations
)
==
0
{
fmt
.
Fprintln
(
w
,
"No faces found."
)
}
else
{
fmt
.
Fprintln
(
w
,
"Faces:"
)
for
i
,
annotation
:=
range
annotations
{
fmt
.
Fprintln
(
w
,
" Face"
,
i
)
fmt
.
Fprintln
(
w
,
" Anger:"
,
annotation
.
AngerLikelihood
)
fmt
.
Fprintln
(
w
,
" Joy:"
,
annotation
.
JoyLikelihood
)
fmt
.
Fprintln
(
w
,
" Surprise:"
,
annotation
.
SurpriseLikelihood
)
}
}
return
nil
}
Java
Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Java reference documentation .
import
com.google.cloud.vision.v1. AnnotateImageRequest
;
import
com.google.cloud.vision.v1. AnnotateImageResponse
;
import
com.google.cloud.vision.v1. BatchAnnotateImagesResponse
;
import
com.google.cloud.vision.v1. FaceAnnotation
;
import
com.google.cloud.vision.v1. Feature
;
import
com.google.cloud.vision.v1. Image
;
import
com.google.cloud.vision.v1. ImageAnnotatorClient
;
import
com.google.protobuf. ByteString
;
import
java.io.FileInputStream
;
import
java.io.IOException
;
import
java.util.ArrayList
;
import
java.util.List
;
public
class
DetectFaces
{
public
static
void
detectFaces
()
throws
IOException
{
// TODO(developer): Replace these variables before running the sample.
String
filePath
=
"path/to/your/image/file.jpg"
;
detectFaces
(
filePath
);
}
// Detects faces in the specified local image.
public
static
void
detectFaces
(
String
filePath
)
throws
IOException
{
List<AnnotateImageRequest>
requests
=
new
ArrayList
<> ();
ByteString
imgBytes
=
ByteString
.
readFrom
(
new
FileInputStream
(
filePath
));
Image
img
=
Image
.
newBuilder
().
setContent
(
imgBytes
).
build
();
Feature
feat
=
Feature
.
newBuilder
().
setType
(
Feature
.
Type
.
FACE_DETECTION
).
build
();
AnnotateImageRequest
request
=
AnnotateImageRequest
.
newBuilder
().
addFeatures
(
feat
).
setImage
(
img
).
build
();
requests
.
add
(
request
);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try
(
ImageAnnotatorClient
client
=
ImageAnnotatorClient
.
create
())
{
BatchAnnotateImagesResponse
response
=
client
.
batchAnnotateImages
(
requests
);
List<AnnotateImageResponse>
responses
=
response
.
getResponsesList
();
for
(
AnnotateImageResponse
res
:
responses
)
{
if
(
res
.
hasError
())
{
System
.
out
.
format
(
"Error: %s%n"
,
res
.
getError
().
getMessage
());
return
;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for
(
FaceAnnotation
annotation
:
res
.
getFaceAnnotationsList
())
{
System
.
out
.
format
(
"anger: %s%njoy: %s%nsurprise: %s%nposition: %s"
,
annotation
.
getAngerLikelihood
(),
annotation
.
getJoyLikelihood
(),
annotation
.
getSurpriseLikelihood
(),
annotation
.
getBoundingPoly
());
}
}
}
}
}
Node.js
Before trying this sample, follow the Node.js setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Node.js API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
// Imports the Google Cloud client library
const
vision
=
require
(
' @google-cloud/vision
'
);
// Creates a client
const
client
=
new
vision
.
ImageAnnotatorClient
();
async
function
detectFaces
()
{
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
const
[
result
]
=
await
client
.
faceDetection
(
fileName
);
const
faces
=
result
.
faceAnnotations
;
console
.
log
(
'Faces:'
);
faces
.
forEach
((
face
,
i
)
=
>
{
console
.
log
(
` Face #
${
i
+
1
}
:`
);
console
.
log
(
` Joy:
${
face
.
joyLikelihood
}
`
);
console
.
log
(
` Anger:
${
face
.
angerLikelihood
}
`
);
console
.
log
(
` Sorrow:
${
face
.
sorrowLikelihood
}
`
);
console
.
log
(
` Surprise:
${
face
.
surpriseLikelihood
}
`
);
});
}
detectFaces
();
Python
Before trying this sample, follow the Python setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Python API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
def
detect_faces
(
path
):
"""Detects faces in an image."""
from
google.cloud
import
vision
client
=
vision
.
ImageAnnotatorClient
()
with
open
(
path
,
"rb"
)
as
image_file
:
content
=
image_file
.
read
()
image
=
vision
.
Image
(
content
=
content
)
response
=
client
.
face_detection
(
image
=
image
)
faces
=
response
.
face_annotations
# Names of likelihood from google.cloud.vision.enums
likelihood_name
=
(
"UNKNOWN"
,
"VERY_UNLIKELY"
,
"UNLIKELY"
,
"POSSIBLE"
,
"LIKELY"
,
"VERY_LIKELY"
,
)
print
(
"Faces:"
)
for
face
in
faces
:
print
(
f
"anger:
{
likelihood_name
[
face
.
anger_likelihood
]
}
"
)
print
(
f
"joy:
{
likelihood_name
[
face
.
joy_likelihood
]
}
"
)
print
(
f
"surprise:
{
likelihood_name
[
face
.
surprise_likelihood
]
}
"
)
vertices
=
[
f
"(
{
vertex
.
x
}
,
{
vertex
.
y
}
)"
for
vertex
in
face
.
bounding_poly
.
vertices
]
print
(
"face bounds:
{}
"
.
format
(
","
.
join
(
vertices
)))
if
response
.
error
.
message
:
raise
Exception
(
"
{}
\n
For more info on error messages, check: "
"https://cloud.google.com/apis/design/errors"
.
format
(
response
.
error
.
message
)
)
Additional languages
C#: Please follow the C# setup instructions on the client libraries page and then visit the Vision reference documentation for .NET.
PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Vision reference documentation for PHP.
Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Vision reference documentation for Ruby.
Detect Faces in a remote image
You can use the Vision API to perform feature detection on a remote image file that is located in Cloud Storage or on the Web. To send a remote file request, specify the file's Web URL or Cloud Storage URI in the request body.
REST
Before using any of the request data, make the following replacements:
- CLOUD_STORAGE_IMAGE_URI
: the path to a valid
image file in a Cloud Storage bucket. You must at least have read privileges to the file.
Example:
-
gs://cloud-samples-data/vision/face/faces.jpeg
-
- RESULTS_INT
: (Optional) An integer value of results to
return. If you omit the
"maxResults"
field and its value, the API returns the default value of 10 results. This field does not apply to the following feature types:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
, orCROP_HINTS
. - PROJECT_ID : Your Google Cloud project ID.
HTTP method and URL:
POST https://vision.googleapis.com/v1/images:annotate
Request JSON body:
{ "requests": [ { "image": { "source": { "imageUri": " CLOUD_STORAGE_IMAGE_URI " } }, "features": [ { "maxResults": RESULTS_INT , "type": "FACE_DETECTION" } ] } ] }
To send your request, choose one of these options:
curl
Save the request body in a file named request.json
,
and execute the following command:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID " \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Save the request body in a file named request.json
,
and execute the following command:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = " PROJECT_ID " }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
If the request is successful, the server returns a 200 OK
HTTP status code and the
response in JSON format.
A FACE_DETECTION
response includes bounding boxes for all faces detected, landmarks
detected on the faces (eyes, nose, mouth, etc.), and confidence ratings for face and image
properties (joy, sorrow, anger, surprise, etc.).
Response
{ "responses": [ { "faceAnnotations": [ { "boundingPoly": { "vertices": [ { "x": 1077, "y": 157 }, { "x": 2146, "y": 157 }, { "x": 2146, "y": 1399 }, { "x": 1077, "y": 1399 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 1112, "y": 407 }, { "x": 1946, "y": 407 }, { "x": 1946, "y": 1270 }, { "x": 1112, "y": 1270 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 1368.748, "y": 739.0957, "z": 0.0024604797 } }, { "type": "RIGHT_EYE", "position": { "x": 1660.6105, "y": 751.5844, "z": -117.06496 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 1284.3208, "y": 666.61487, "z": 63.41506 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 1418.9249, "y": 671.49414, "z": -83.82396 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 1556.9579, "y": 672.2199, "z": -139.39935 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1771.4799, "y": 682.65845, "z": -131.66716 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 1479.6194, "y": 741.87305, "z": -114.84635 } }, { "type": "NOSE_TIP", "position": { "x": 1443.3151, "y": 917.5109, "z": -194.49301 } }, { "type": "UPPER_LIP", "position": { "x": 1466.7897, "y": 1025.3483, "z": -130.1202 } }, { "type": "LOWER_LIP", "position": { "x": 1467.2588, "y": 1147.0403, "z": -109.24505 } }, { "type": "MOUTH_LEFT", "position": { "x": 1376.8649, "y": 1066.0856, "z": -6.8136826 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1652, "y": 1079.3108, "z": -106.93649 } }, { "type": "MOUTH_CENTER", "position": { "x": 1485.5554, "y": 1087.2388, "z": -110.68126 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1571.9475, "y": 944.9213, "z": -124.11806 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 1395.2339, "y": 938.12787, "z": -58.072197 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 1468.4205, "y": 968.8732, "z": -132.09975 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 1357.8658, "y": 711.2427, "z": -14.618992 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 1423.6936, "y": 750.4164, "z": -23.540215 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1360.5627, "y": 762.87415, "z": -1.2607727 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 1313.72, "y": 739.443, "z": 50.216393 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1661.6622, "y": 718.6839, "z": -134.17404 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1730.0901, "y": 763.57104, "z": -116.365845 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1660.8823, "y": 777.3474, "z": -120.8635 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 1590.8903, "y": 753.5044, "z": -91.84842 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1345.7522, "y": 640.18243, "z": -27.887913 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1660.5848, "y": 648.36145, "z": -153.73691 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 1274.1006, "y": 826.2645, "z": 422.6642 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 2014.8041, "y": 908.56537, "z": 149.61232 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 1476.2395, "y": 669.9625, "z": -120.59111 } }, { "type": "CHIN_GNATHION", "position": { "x": 1477.3256, "y": 1269.3269, "z": -67.748795 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 1336.8848, "y": 1096.2242, "z": 286.73004 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1863.2197, "y": 1128.6213, "z": 68.90431 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 1317.8549, "y": 940.8025, "z": 50.863163 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1733.4912, "y": 964.073, "z": -112.43947 } } ], "rollAngle": 1.5912293, "panAngle": -22.01964, "tiltAngle": -1.4997566, "detectionConfidence": 0.9310801, "landmarkingConfidence": 0.5775582, "joyLikelihood": "VERY_LIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "VERY_UNLIKELY", "headwearLikelihood": "POSSIBLE" }, { "boundingPoly": { "vertices": [ { "x": 144, "y": 1273 }, { "x": 793, "y": 1273 }, { "x": 793, "y": 1844 }, { "x": 144, "y": 1844 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 181, "y": 1373 }, { "x": 742, "y": 1373 }, { "x": 742, "y": 1844 }, { "x": 181, "y": 1844 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 356.13745, "y": 1635.7034, "z": 0.0045757294 } }, { "type": "RIGHT_EYE", "position": { "x": 557.07324, "y": 1601.1769, "z": -10.258446 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 284.70563, "y": 1599.5238, "z": 28.755493 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 397.47183, "y": 1574.1455, "z": -28.716581 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 484.00983, "y": 1559.5669, "z": -33.509003 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 607.31726, "y": 1551.2396, "z": 11.0225525 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 447.86597, "y": 1603.2458, "z": -40.69277 } }, { "type": "NOSE_TIP", "position": { "x": 463.15356, "y": 1705.7849, "z": -114.36831 } }, { "type": "UPPER_LIP", "position": { "x": 475.02646, "y": 1779.54, "z": -85.219086 } }, { "type": "LOWER_LIP", "position": { "x": 483.2983, "y": 1844.4594, "z": -83.812 } }, { "type": "MOUTH_LEFT", "position": { "x": 391.11206, "y": 1824.9432, "z": -34.578503 } }, { "type": "MOUTH_RIGHT", "position": { "x": 559.85266, "y": 1797.929, "z": -44.700863 } }, { "type": "MOUTH_CENTER", "position": { "x": 478.21106, "y": 1807.5089, "z": -76.46759 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 522.9539, "y": 1717.8636, "z": -51.489075 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 414.95767, "y": 1739.2955, "z": -46.75015 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 468.7361, "y": 1739.5958, "z": -78.64168 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 352.39365, "y": 1618.0576, "z": -7.2005444 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 395.81454, "y": 1629.9379, "z": -2.4021797 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 357.511, "y": 1649.6553, "z": -4.4735374 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 316.1426, "y": 1645.2771, "z": 18.701395 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 553.78973, "y": 1582.3448, "z": -17.07942 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 596.6489, "y": 1599.1897, "z": 4.014868 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 558.60706, "y": 1615.964, "z": -15.077105 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 514.8054, "y": 1605.6407, "z": -7.929638 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 336.4973, "y": 1567.6466, "z": -7.853897 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 542.3708, "y": 1536.191, "z": -19.405855 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 231.38948, "y": 1749.3823, "z": 221.4534 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 712.5644, "y": 1670.4897, "z": 199.4929 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 439.35938, "y": 1561.1454, "z": -36.451645 } }, { "type": "CHIN_GNATHION", "position": { "x": 501.61096, "y": 1942.0133, "z": -75.04764 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 304.9834, "y": 1892.5361, "z": 114.12407 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 684.92535, "y": 1824.337, "z": 96.13425 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 334.5645, "y": 1764.659, "z": -2.0755844 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 609.5919, "y": 1719.6847, "z": -16.861538 } } ], "rollAngle": -8.514851, "panAngle": -3.096844, "tiltAngle": 9.26052, "detectionConfidence": 0.5463216, "landmarkingConfidence": 0.55711126, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "UNLIKELY", "headwearLikelihood": "VERY_UNLIKELY" }, { "boundingPoly": { "vertices": [ { "x": 785, "y": 167 }, { "x": 1100, "y": 167 }, { "x": 1100, "y": 534 }, { "x": 785, "y": 534 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 834, "y": 220 }, { "x": 1101, "y": 220 }, { "x": 1101, "y": 506 }, { "x": 834, "y": 506 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 933.74615, "y": 351.82394, "z": -0.00068986416 } }, { "type": "RIGHT_EYE", "position": { "x": 1005.8836, "y": 329.02396, "z": 43.38338 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 901.93494, "y": 333.3503, "z": -9.714935 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 957.4015, "y": 319.9436, "z": -6.8983736 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 987.50134, "y": 308.46817, "z": 13.108145 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1031.5519, "y": 298.8843, "z": 65.60683 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 979.4568, "y": 336.0551, "z": 3.8077774 } }, { "type": "NOSE_TIP", "position": { "x": 1003.45795, "y": 398.80377, "z": -17.351936 } }, { "type": "UPPER_LIP", "position": { "x": 1000.16614, "y": 432.11664, "z": 5.2740355 } }, { "type": "LOWER_LIP", "position": { "x": 1004.0378, "y": 456.92422, "z": 13.545323 } }, { "type": "MOUTH_LEFT", "position": { "x": 961.922, "y": 448.64325, "z": 11.117096 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1025.2979, "y": 432.70157, "z": 47.89795 } }, { "type": "MOUTH_CENTER", "position": { "x": 1002.51434, "y": 443.3482, "z": 13.021965 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1015.5027, "y": 402.8421, "z": 28.03568 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 969.764, "y": 413.05563, "z": 3.1156778 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 997.8564, "y": 416.98083, "z": 3.3404813 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 930.542, "y": 343.17078, "z": -6.9020395 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 950.7726, "y": 348.11346, "z": 9.216144 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 933.6862, "y": 359.50848, "z": -1.3347243 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 914.83966, "y": 356.1447, "z": -1.4299142 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1006.59766, "y": 319.50406, "z": 38.31219 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1021.45886, "y": 327.68784, "z": 61.100002 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1009.46686, "y": 336.0832, "z": 43.87975 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 991.17535, "y": 331.97632, "z": 34.4881 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 928.40436, "y": 317.13898, "z": -14.411907 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1008.5887, "y": 294.364, "z": 32.917953 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 835.18915, "y": 395.7093, "z": 81.31065 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 1024.4136, "y": 360.64178, "z": 182.02446 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 975.5221, "y": 315.06647, "z": 0.31154716 } }, { "type": "CHIN_GNATHION", "position": { "x": 1010.74097, "y": 503.23572, "z": 29.966637 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 891.86237, "y": 466.7829, "z": 58.84553 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1031.9008, "y": 428.13455, "z": 145.42484 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 929.4197, "y": 418.09122, "z": 4.574672 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1033.7278, "y": 390.5432, "z": 65.6329 } } ], "rollAngle": -12.077273, "panAngle": 27.194477, "tiltAngle": -5.252778, "detectionConfidence": 0.38126788, "landmarkingConfidence": 0.040030442, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "LIKELY", "blurredLikelihood": "VERY_LIKELY", "headwearLikelihood": "VERY_UNLIKELY" } ] } ] }
Go
Before trying this sample, follow the Go setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Go API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
// detectFaces gets faces from the Vision API for an image at the given file path.
func
detectFacesURI
(
w
io
.
Writer
,
file
string
)
error
{
ctx
:=
context
.
Background
()
client
,
err
:=
vision
.
NewImageAnnotatorClient
(
ctx
)
if
err
!=
nil
{
return
err
}
image
:=
vision
.
NewImageFromURI
(
file
)
annotations
,
err
:=
client
.
DetectFaces
(
ctx
,
image
,
nil
,
10
)
if
err
!=
nil
{
return
err
}
if
len
(
annotations
)
==
0
{
fmt
.
Fprintln
(
w
,
"No faces found."
)
}
else
{
fmt
.
Fprintln
(
w
,
"Faces:"
)
for
i
,
annotation
:=
range
annotations
{
fmt
.
Fprintln
(
w
,
" Face"
,
i
)
fmt
.
Fprintln
(
w
,
" Anger:"
,
annotation
.
AngerLikelihood
)
fmt
.
Fprintln
(
w
,
" Joy:"
,
annotation
.
JoyLikelihood
)
fmt
.
Fprintln
(
w
,
" Surprise:"
,
annotation
.
SurpriseLikelihood
)
}
}
return
nil
}
Java
Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Java reference documentation .
import
com.google.cloud.vision.v1. AnnotateImageRequest
;
import
com.google.cloud.vision.v1. AnnotateImageResponse
;
import
com.google.cloud.vision.v1. BatchAnnotateImagesResponse
;
import
com.google.cloud.vision.v1. FaceAnnotation
;
import
com.google.cloud.vision.v1. Feature
;
import
com.google.cloud.vision.v1. Image
;
import
com.google.cloud.vision.v1. ImageAnnotatorClient
;
import
com.google.cloud.vision.v1. ImageSource
;
import
java.io.IOException
;
import
java.util.ArrayList
;
import
java.util.List
;
public
class
DetectFacesGcs
{
public
static
void
detectFacesGcs
()
throws
IOException
{
// TODO(developer): Replace these variables before running the sample.
String
filePath
=
"gs://your-gcs-bucket/path/to/image/file.jpg"
;
detectFacesGcs
(
filePath
);
}
// Detects faces in the specified remote image on Google Cloud Storage.
public
static
void
detectFacesGcs
(
String
gcsPath
)
throws
IOException
{
List<AnnotateImageRequest>
requests
=
new
ArrayList
<> ();
ImageSource
imgSource
=
ImageSource
.
newBuilder
().
setGcsImageUri
(
gcsPath
).
build
();
Image
img
=
Image
.
newBuilder
().
setSource
(
imgSource
).
build
();
Feature
feat
=
Feature
.
newBuilder
().
setType
(
Feature
.
Type
.
FACE_DETECTION
).
build
();
AnnotateImageRequest
request
=
AnnotateImageRequest
.
newBuilder
().
addFeatures
(
feat
).
setImage
(
img
).
build
();
requests
.
add
(
request
);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try
(
ImageAnnotatorClient
client
=
ImageAnnotatorClient
.
create
())
{
BatchAnnotateImagesResponse
response
=
client
.
batchAnnotateImages
(
requests
);
List<AnnotateImageResponse>
responses
=
response
.
getResponsesList
();
for
(
AnnotateImageResponse
res
:
responses
)
{
if
(
res
.
hasError
())
{
System
.
out
.
format
(
"Error: %s%n"
,
res
.
getError
().
getMessage
());
return
;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for
(
FaceAnnotation
annotation
:
res
.
getFaceAnnotationsList
())
{
System
.
out
.
format
(
"anger: %s%njoy: %s%nsurprise: %s%nposition: %s"
,
annotation
.
getAngerLikelihood
(),
annotation
.
getJoyLikelihood
(),
annotation
.
getSurpriseLikelihood
(),
annotation
.
getBoundingPoly
());
}
}
}
}
}
Node.js
Before trying this sample, follow the Node.js setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Node.js API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
// Imports the Google Cloud client libraries
const
vision
=
require
(
' @google-cloud/vision
'
);
// Creates a client
const
client
=
new
vision
.
ImageAnnotatorClient
();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs face detection on the gcs file
const
[
result
]
=
await
client
.
faceDetection
(
`gs://
${
bucketName
}
/
${
fileName
}
`
);
const
faces
=
result
.
faceAnnotations
;
console
.
log
(
'Faces:'
);
faces
.
forEach
((
face
,
i
)
=
>
{
console
.
log
(
` Face #
${
i
+
1
}
:`
);
console
.
log
(
` Joy:
${
face
.
joyLikelihood
}
`
);
console
.
log
(
` Anger:
${
face
.
angerLikelihood
}
`
);
console
.
log
(
` Sorrow:
${
face
.
sorrowLikelihood
}
`
);
console
.
log
(
` Surprise:
${
face
.
surpriseLikelihood
}
`
);
});
Python
Before trying this sample, follow the Python setup instructions in the Vision quickstart using client libraries . For more information, see the Vision Python API reference documentation .
To authenticate to Vision, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
def
detect_faces_uri
(
uri
):
"""Detects faces in the file located in Google Cloud Storage or the web."""
from
google.cloud
import
vision
client
=
vision
.
ImageAnnotatorClient
()
image
=
vision
.
Image
()
image
.
source
.
image_uri
=
uri
response
=
client
.
face_detection
(
image
=
image
)
faces
=
response
.
face_annotations
# Names of likelihood from google.cloud.vision.enums
likelihood_name
=
(
"UNKNOWN"
,
"VERY_UNLIKELY"
,
"UNLIKELY"
,
"POSSIBLE"
,
"LIKELY"
,
"VERY_LIKELY"
,
)
print
(
"Faces:"
)
for
face
in
faces
:
print
(
f
"anger:
{
likelihood_name
[
face
.
anger_likelihood
]
}
"
)
print
(
f
"joy:
{
likelihood_name
[
face
.
joy_likelihood
]
}
"
)
print
(
f
"surprise:
{
likelihood_name
[
face
.
surprise_likelihood
]
}
"
)
vertices
=
[
f
"(
{
vertex
.
x
}
,
{
vertex
.
y
}
)"
for
vertex
in
face
.
bounding_poly
.
vertices
]
print
(
"face bounds:
{}
"
.
format
(
","
.
join
(
vertices
)))
if
response
.
error
.
message
:
raise
Exception
(
"
{}
\n
For more info on error messages, check: "
"https://cloud.google.com/apis/design/errors"
.
format
(
response
.
error
.
message
)
)
gcloud
To perform face detection, use the gcloud ml vision detect-faces
command as shown in the following example:
gcloud ml vision detect-faces gs://cloud-samples-data/vision/face/faces.jpeg
Additional languages
C#: Please follow the C# setup instructions on the client libraries page and then visit the Vision reference documentation for .NET.
PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Vision reference documentation for PHP.
Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Vision reference documentation for Ruby.
Try it
Try face detection below. You can use the
image specified already ( gs://cloud-samples-data/vision/face/faces.jpeg
) or
specify your own image in its place. Send the request by selecting Execute.
Request body:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "FACE_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/face/faces.jpeg" } } } ] }