Fine-tune Gemma 3 on an A4 Slurm cluster


This tutorial shows you how to fine-tune the Gemma 3 large language model (LLM) on a multi-node Slurm cluster that uses two A4 virtual machine (VM) instances. As part of this tutorial, you do the following:

This tutorial is intended for machine learning (ML) engineers, platform administrators and operators, and for data and AI specialists who are interested in using Slurm job scheduling capabilities to handle fine-tuning workloads.

Objectives

  1. Access Gemma 3 by using Hugging Face.

  2. Prepare your environment.

  3. Create an A4 Slurm cluster.

  4. Prepare your workload.

  5. Run a fine-tuning job.

  6. Monitor your job.

  7. Clean up.

Costs

In this document, you use the following billable components of Google Cloud:

To generate a cost estimate based on your projected usage, use the pricing calculator .

New Google Cloud users might be eligible for a free trial .

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.

  3. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

  4. To initialize the gcloud CLI, run the following command:

    gcloud  
    init
  5. Create or select a Google Cloud project .

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID 
      

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID 
      

      Replace PROJECT_ID with your Google Cloud project name.

  6. Verify that billing is enabled for your Google Cloud project .

  7. Enable the required API:

    gcloud  
    services  
     enable 
      
    compute.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com
  8. Install the Google Cloud CLI.

  9. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

  10. To initialize the gcloud CLI, run the following command:

    gcloud  
    init
  11. Create or select a Google Cloud project .

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID 
      

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID 
      

      Replace PROJECT_ID with your Google Cloud project name.

  12. Verify that billing is enabled for your Google Cloud project .

  13. Enable the required API:

    gcloud  
    services  
     enable 
      
    compute.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com
  14. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/compute.admin, roles/iam.serviceAccountUser, roles/file.editor, roles/storage.admin, roles/serviceusage.serviceUsageAdmin

    gcloud  
    projects  
    add-iam-policy-binding  
     PROJECT_ID 
      
    --member = 
     "user: USER_IDENTIFIER 
    " 
      
    --role = 
     ROLE 
    

    Replace the following:

    • PROJECT_ID : your project ID.
    • USER_IDENTIFIER : the identifier for your user account—for example, myemail@example.com .
    • ROLE : the IAM role that you grant to your user account.
  15. Enable the default service account for your Google Cloud project:
    gcloud  
    iam  
    service-accounts  
     enable 
      
     PROJECT_NUMBER 
    -compute@developer.gserviceaccount.com  
     \ 
      
    --project = 
     PROJECT_ID 
    

    Replace PROJECT_NUMBER with your project number. To review your project number, see Get an existing project .

  16. Grant the Editor role ( roles/editor ) to the default service account:
    gcloud  
    projects  
    add-iam-policy-binding  
     PROJECT_ID 
      
     \ 
      
    --member = 
     "serviceAccount: PROJECT_NUMBER 
    -compute@developer.gserviceaccount.com" 
      
     \ 
      
    --role = 
    roles/editor
  17. Create local authentication credentials for your user account:
    gcloud  
    auth  
    application-default  
    login
  18. Enable OS Login for your project:
    gcloud  
    compute  
    project-info  
    add-metadata  
    --metadata = 
    enable-oslogin = 
    TRUE
  19. Sign in to or create a Hugging Face account .

Access Gemma 3 by using Hugging Face

To use Hugging Face to access Gemma 3, follow these steps:

  1. Sign the consent agreement to use Gemma 3 12B .

  2. Create a Hugging Face read access token . Click Your Profile > Settings > Access tokens > +Create new token

  3. Copy and save the read access token value. You use it later in this tutorial.

Prepare your environment

To prepare your environment, follow these steps:

  1. Clone the Cluster Toolkit GitHub repository:

     git  
    clone  
    https://github.com/GoogleCloudPlatform/cluster-toolkit.git 
    
  2. Create a Cloud Storage bucket:

     gcloud  
    storage  
    buckets  
    create  
    gs:// BUCKET_NAME 
      
     \ 
      
    --project = 
     PROJECT_ID 
     
    

    Replace the following:

    • BUCKET_NAME : a name for your Cloud Storage bucket that follows bucket naming requirements .

    • PROJECT_ID : the ID of the Google Cloud project where you want to create your Cloud Storage bucket.

Create an A4 Slurm cluster

To create an A4 Slurm cluster, follow these steps:

  1. Go to the cluster-toolkit directory:

      cd 
      
    cluster-toolkit 
    
  2. If it's your first time using Cluster Toolkit, then build the gcluster binary:

     make 
    
  3. Go to the examples/machine-learning/a4-highgpu-8g directory:

      cd 
      
    examples/machine-learning/a4-highgpu-8g/ 
    
  4. Open the a4high-slurm-deployment.yaml file, and then edit it as follows:

      terraform_backend_defaults 
     : 
      
     type 
     : 
      
     gcs 
      
     configuration 
     : 
      
     bucket 
     : 
      
      BUCKET_NAME 
     
     vars 
     : 
      
     deployment_name 
     : 
      
     a4-high 
      
     project_id 
     : 
      
      PROJECT_ID 
     
      
     region 
     : 
      
      REGION 
     
      
     zone 
     : 
      
      ZONE 
     
      
     a4h_cluster_size 
     : 
      
     2 
      
     a4h_reservation_name 
     : 
      
      RESERVATION_URL 
     
     
    

    Replace the following:

    • BUCKET_NAME : the name of the Cloud Storage bucket that you created in the previous section.

    • PROJECT_ID : the ID of the Google Cloud project where your Cloud Storage exists and where you want to create your Slurm cluster.

    • REGION : the region where your reservation exists.

    • ZONE : the zone where your reservation exists.

    • RESERVATION_URL : the URL of the reservation that you want to use to create your Slurm cluster. Based on the project in which the reservation exists, specify one of the following values:

      • The reservation exists in your project: RESERVATION_NAME

      • The reservation exists in a different project, and your project can use the reservation: projects/ RESERVATION_PROJECT_ID /reservations/ RESERVATION_NAME

  5. Deploy the cluster:

     ./gcluster  
    deploy  
    -d  
    examples/machine-learning/a4-highgpu-8g/a4high-slurm-deployment.yaml  
    examples/machine-learning/a4-highgpu-8g/a4high-slurm-blueprint.yaml  
    --auto-approve 
    

    The ./gcluster deploy command is a two-phase process, which is as follows:

    • The first phase builds a custom image with all software pre-installed, which can take up to 35 minutes to complete.

    • The second phase deploys the cluster by using that custom image. This process should complete more quickly than the first phase.

    If the first phase succeeds but the second phase fails, then you can try to deploy the Slurm cluster again by skipping the first phase:

     ./gcluster  
    deploy  
    -d  
    examples/machine-learning/a4-highgpu-8g/a4high-slurm-deployment.yaml  
    examples/machine-learning/a4-highgpu-8g/a4high-slurm-blueprint.yaml  
    --auto-approve  
    --skip  
     "image" 
      
    -w 
    

Prepare your workload

To prepare your workload, follow these steps:

  1. Create workload scripts .

  2. Upload scripts to the Slurm cluster .

  3. Connect to the Slurm cluster .

  4. Install frameworks and tools .

Create workload scripts

To create the scripts that your fine-tuning workload will use, follow these steps:

  1. To set up the Python virtual environment, create the install_environment.sh file with the following content:

      #!/bin/bash 
     # This script should be run ONCE on the login node to set up the 
     # shared Python virtual environment. 
     set 
      
    -e echo 
      
     "--- Creating Python virtual environment in /home ---" 
    python3  
    -m  
    venv  
    ~/.venv echo 
      
     "--- Activating virtual environment ---" 
     source 
      
    ~/.venv/bin/activate echo 
      
     "--- Installing build dependencies ---" 
    pip  
    install  
    --upgrade  
    pip  
    wheel  
    packaging echo 
      
     "--- Installing PyTorch for CUDA 12.8 ---" 
    pip  
    install  
    torch  
    --index-url  
    https://download.pytorch.org/whl/cu128 echo 
      
     "--- Installing application requirements ---" 
    pip  
    install  
    -r  
    requirements.txt echo 
      
     "--- Environment setup complete. You can now submit jobs with sbatch. ---" 
     
    
  2. To specify the configurations for your fine-tuning job, create the accelerate_config.yaml file with the following content:

      # Default configuration for a 2-node, 8-GPU-per-node (16 total GPUs) FSDP training job. 
     compute_environment 
     : 
      
     "LOCAL_MACHINE" 
     distributed_type 
     : 
      
     "FSDP" 
     downcast_bf16 
     : 
      
     "no" 
     fsdp_config 
     : 
      
     fsdp_auto_wrap_policy 
     : 
      
     "TRANSFORMER_BASED_WRAP" 
      
     fsdp_backward_prefetch 
     : 
      
     "BACKWARD_PRE" 
      
     fsdp_cpu_ram_efficient_loading 
     : 
      
     true 
      
     fsdp_forward_prefetch 
     : 
      
     false 
      
     fsdp_offload_params 
     : 
      
     false 
      
     fsdp_sharding_strategy 
     : 
      
     "FULL_SHARD" 
      
     fsdp_state_dict_type 
     : 
      
     "FULL_STATE_DICT" 
      
     fsdp_transformer_layer_cls_to_wrap 
     : 
      
     "Gemma3DecoderLayer" 
      
     fsdp_use_orig_params 
     : 
      
     true 
     machine_rank 
     : 
      
     0 
     main_training_function 
     : 
      
     "main" 
     mixed_precision 
     : 
      
     "bf16" 
     num_machines 
     : 
      
     2 
     num_processes 
     : 
      
     16 
     rdzv_backend 
     : 
      
     "static" 
     same_network 
     : 
      
     true 
     tpu_env 
     : 
      
     [] 
     use_cpu 
     : 
      
     false 
     
    
  3. To specify the tasks for the jobs to run on your Slurm cluster, create the submit.slurm file with the following content:

      #!/bin/bash 
     #SBATCH --job-name=gemma3-finetune 
     #SBATCH --nodes=2 
     #SBATCH --ntasks-per-node=8 # 8 tasks per node 
     #SBATCH --gpus-per-task=1   # 1 GPU per task 
     #SBATCH --partition=a4high 
     #SBATCH --output=slurm-%j.out 
     #SBATCH --error=slurm-%j.err 
     set 
      
    -e echo 
      
     "--- Slurm Job Started ---" 
     # --- STAGE 1: Copy Environment to Local SSD on all nodes --- 
    srun  
    --ntasks = 
     $SLURM_NNODES 
      
    --ntasks-per-node = 
     1 
      
    bash  
    -c  
     ' 
     echo "Setting up local environment on $(hostname)..." 
     LOCAL_VENV="/mnt/localssd/venv_job_${SLURM_JOB_ID}" 
     LOCAL_CACHE="/mnt/localssd/hf_cache_job_${SLURM_JOB_ID}" 
     rsync -a --info=progress2 ~/./.venv/ ${LOCAL_VENV}/ 
     mkdir -p ${LOCAL_CACHE} 
     echo "Setup on $(hostname) complete." 
     ' 
     # --- STAGE 2: Run the Training Job using the Local Environment --- 
     echo 
      
     "--- Starting Training ---" 
     LOCAL_VENV 
     = 
     "/mnt/localssd/venv_job_ 
     ${ 
     SLURM_JOB_ID 
     } 
     " 
     LOCAL_CACHE 
     = 
     "/mnt/localssd/hf_cache_job_ 
     ${ 
     SLURM_JOB_ID 
     } 
     " 
     LOCAL_OUTPUT_DIR 
     = 
     "/mnt/localssd/outputs_ 
     ${ 
     SLURM_JOB_ID 
     } 
     " 
    mkdir  
    -p  
     ${ 
     LOCAL_OUTPUT_DIR 
     } 
     # This is the main training command. 
    srun  
    --ntasks = 
     $(( 
     SLURM_NNODES 
      
     * 
      
     8 
     )) 
      
    --gpus-per-task = 
     1 
      
    bash  
    -c  
     " 
     source 
     ${ 
     LOCAL_VENV 
     } 
     /bin/activate 
     export HF_HOME= 
     ${ 
     LOCAL_CACHE 
     } 
     export HF_DATASETS_CACHE= 
     ${ 
     LOCAL_CACHE 
     } 
     # Run the Python script directly. 
     # Accelerate will divide the work 
     python ~/train.py \ 
     --model_id google/gemma-3-12b-pt \ 
     --output_dir 
     ${ 
     LOCAL_OUTPUT_DIR 
     } 
     \ 
     --per_device_train_batch_size 1 \ 
     --gradient_accumulation_steps 8 \ 
     --num_train_epochs 3 \ 
     --learning_rate 1e-5 \ 
     --save_strategy steps \ 
     --save_steps 100 
     " 
     # --- STAGE 3: Copy Final Model from Local SSD to Home Directory --- 
     echo 
      
     "--- Copying final model from local SSD to /home ---" 
     # This command runs only on the first node of the job allocation 
     # and copies the final model back to the persistent shared directory. 
    srun  
    --nodes = 
     1 
      
    --ntasks = 
     1 
      
    --ntasks-per-node = 
     1 
      
    bash  
    -c  
     " 
     rsync -a --info=progress2 
     ${ 
     LOCAL_OUTPUT_DIR 
     } 
     / ~/gemma-12b-text-to-sql-finetuned/ 
     " 
     echo 
      
     "--- Slurm Job Finished ---" 
     
    
  4. To specify the dependencies for your fine-tuning job, create the requirements.txt file with the following content:

     # Hugging Face Libraries (Pinned to recent, stable versions for reproducibility)
    transformers==4.53.3
    datasets==4.0.0
    accelerate==1.9.0
    evaluate==0.4.5
    bitsandbytes==0.46.1
    trl==0.19.1
    peft==0.16.0
    
    # Other dependencies
    tensorboard==2.20.0
    protobuf==6.31.1
    sentencepiece==0.2.0 
    
  5. To specify the instructions for your job, create the train.py file with the following content:

      import 
      
     torch 
     import 
      
     argparse 
     from 
      
     datasets 
      
     import 
     load_dataset 
     from 
      
     transformers 
      
     import 
     AutoTokenizer 
     , 
     AutoModelForCausalLM 
     , 
     BitsAndBytesConfig 
     , 
     AutoConfig 
     from 
      
     peft 
      
     import 
     LoraConfig 
     , 
     prepare_model_for_kbit_training 
     , 
     get_peft_model 
     from 
      
     trl 
      
     import 
     SFTTrainer 
     , 
     SFTConfig 
     from 
      
     huggingface_hub 
      
     import 
     login 
     def 
      
     get_args 
     (): 
     parser 
     = 
     argparse 
     . 
     ArgumentParser 
     () 
     parser 
     . 
     add_argument 
     ( 
     "--model_id" 
     , 
     type 
     = 
     str 
     , 
     default 
     = 
     "google/gemma-3-12b-pt" 
     , 
     help 
     = 
     "Hugging Face model ID" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--hf_token" 
     , 
     type 
     = 
     str 
     , 
     default 
     = 
     None 
     , 
     help 
     = 
     "Hugging Face token for private models" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--dataset_name" 
     , 
     type 
     = 
     str 
     , 
     default 
     = 
     "philschmid/gretel-synthetic-text-to-sql" 
     , 
     help 
     = 
     "Hugging Face dataset name" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--output_dir" 
     , 
     type 
     = 
     str 
     , 
     default 
     = 
     "gemma-12b-text-to-sql" 
     , 
     help 
     = 
     "Directory to save model checkpoints" 
     ) 
     # LoRA arguments 
     parser 
     . 
     add_argument 
     ( 
     "--lora_r" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     16 
     , 
     help 
     = 
     "LoRA attention dimension" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--lora_alpha" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     16 
     , 
     help 
     = 
     "LoRA alpha scaling factor" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--lora_dropout" 
     , 
     type 
     = 
     float 
     , 
     default 
     = 
     0.05 
     , 
     help 
     = 
     "LoRA dropout probability" 
     ) 
     # SFTConfig arguments 
     parser 
     . 
     add_argument 
     ( 
     "--max_seq_length" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     512 
     , 
     help 
     = 
     "Maximum sequence length" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--num_train_epochs" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     3 
     , 
     help 
     = 
     "Number of training epochs" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--per_device_train_batch_size" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     8 
     , 
     help 
     = 
     "Batch size per device during training" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--gradient_accumulation_steps" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     1 
     , 
     help 
     = 
     "Gradient accumulation steps" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--learning_rate" 
     , 
     type 
     = 
     float 
     , 
     default 
     = 
     1e-5 
     , 
     help 
     = 
     "Learning rate" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--logging_steps" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     10 
     , 
     help 
     = 
     "Log every X steps" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--save_strategy" 
     , 
     type 
     = 
     str 
     , 
     default 
     = 
     "steps" 
     , 
     help 
     = 
     "Checkpoint save strategy" 
     ) 
     parser 
     . 
     add_argument 
     ( 
     "--save_steps" 
     , 
     type 
     = 
     int 
     , 
     default 
     = 
     100 
     , 
     help 
     = 
     "Save checkpoint every X steps" 
     ) 
     return 
     parser 
     . 
     parse_args 
     () 
     def 
      
     main 
     (): 
     args 
     = 
     get_args 
     () 
     # --- 1. Setup and Login --- 
     if 
     args 
     . 
     hf_token 
     : 
     login 
     ( 
     args 
     . 
     hf_token 
     ) 
     # --- 2. Create and prepare the fine-tuning dataset --- 
     # The SFTTrainer will use the `formatting_func` to apply the chat template. 
     dataset 
     = 
     load_dataset 
     ( 
     args 
     . 
     dataset_name 
     , 
     split 
     = 
     "train" 
     ) 
     dataset 
     = 
     dataset 
     . 
     shuffle 
     () 
     . 
     select 
     ( 
     range 
     ( 
     12500 
     )) 
     dataset 
     = 
     dataset 
     . 
     train_test_split 
     ( 
     test_size 
     = 
     2500 
     / 
     12500 
     ) 
     # --- 3. Configure Model and Tokenizer --- 
     if 
     torch 
     . 
     cuda 
     . 
     is_available 
     () 
     and 
     torch 
     . 
     cuda 
     . 
     get_device_capability 
     ()[ 
     0 
     ] 
    > = 
     8 
     : 
     torch_dtype_obj 
     = 
     torch 
     . 
     bfloat16 
     torch_dtype_str 
     = 
     "bfloat16" 
     else 
     : 
     torch_dtype_obj 
     = 
     torch 
     . 
     float16 
     torch_dtype_str 
     = 
     "float16" 
     tokenizer 
     = 
     AutoTokenizer 
     . 
     from_pretrained 
     ( 
     args 
     . 
     model_id 
     ) 
     tokenizer 
     . 
     pad_token 
     = 
     tokenizer 
     . 
     eos_token 
     gemma_chat_template 
     = 
     ( 
     "" 
     "" 
     ) 
     tokenizer 
     . 
     chat_template 
     = 
     gemma_chat_template 
     # --- 4. Define the Formatting Function --- 
     # This function will be used by the SFTTrainer to format each sample 
     # from the dataset into the correct chat template format. 
     def 
      
     formatting_func 
     ( 
     example 
     ): 
     # The create_conversation logic is now implicitly handled by this. 
     # We need to construct the messages list here. 
     system_message 
     = 
     "You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA." 
     user_prompt 
     = 
     "Given the <USER_QUERY> and the <SCHEMA>, generate the corresponding SQL command to retrieve the desired data, considering the query's syntax, semantics, and schema constraints. 
     \n\n 
    < SCHEMA 
    > \n 
     {context} 
     \n 
    < /SCHEMA 
    > \n\n 
    < USER_QUERY 
    > \n 
     {question} 
     \n 
    < /USER_QUERY 
    > \n 
     " 
     messages 
     = 
     [ 
     { 
     "role" 
     : 
     "user" 
     , 
     "content" 
     : 
     user_prompt 
     . 
     format 
     ( 
     question 
     = 
     example 
     [ 
     "sql_prompt" 
     ][ 
     0 
     ], 
     context 
     = 
     example 
     [ 
     "sql_context" 
     ][ 
     0 
     ])}, 
     { 
     "role" 
     : 
     "assistant" 
     , 
     "content" 
     : 
     example 
     [ 
     "sql" 
     ][ 
     0 
     ]} 
     ] 
     return 
     tokenizer 
     . 
     apply_chat_template 
     ( 
     messages 
     , 
     tokenize 
     = 
     False 
     ) 
     # --- 5. Load Quantized Model and Apply PEFT --- 
     # Define the quantization configuration 
     quantization_config 
     = 
     BitsAndBytesConfig 
     ( 
     load_in_4bit 
     = 
     True 
     , 
     bnb_4bit_quant_type 
     = 
     'nf4' 
     , 
     bnb_4bit_compute_dtype 
     = 
     torch_dtype_obj 
     , 
     bnb_4bit_use_double_quant 
     = 
     True 
     , 
     ) 
     config 
     = 
     AutoConfig 
     . 
     from_pretrained 
     ( 
     args 
     . 
     model_id 
     ) 
     config 
     . 
     use_cache 
     = 
     False 
     # Load the base model with quantization 
     print 
     ( 
     "Loading base model..." 
     ) 
     model 
     = 
     AutoModelForCausalLM 
     . 
     from_pretrained 
     ( 
     args 
     . 
     model_id 
     , 
     config 
     = 
     config 
     , 
     quantization_config 
     = 
     quantization_config 
     , 
     attn_implementation 
     = 
     "eager" 
     , 
     torch_dtype 
     = 
     torch_dtype_obj 
     , 
     ) 
     # Prepare the model for k-bit training 
     model 
     = 
     prepare_model_for_kbit_training 
     ( 
     model 
     ) 
     # Configure LoRA. 
     peft_config 
     = 
     LoraConfig 
     ( 
     lora_alpha 
     = 
     args 
     . 
     lora_alpha 
     , 
     lora_dropout 
     = 
     args 
     . 
     lora_dropout 
     , 
     r 
     = 
     args 
     . 
     lora_r 
     , 
     bias 
     = 
     "none" 
     , 
     target_modules 
     = 
     [ 
     "q_proj" 
     , 
     "k_proj" 
     , 
     "v_proj" 
     , 
     "o_proj" 
     , 
     "gate_proj" 
     , 
     "up_proj" 
     , 
     "down_proj" 
     ], 
     task_type 
     = 
     "CAUSAL_LM" 
     , 
     ) 
     # Apply the PEFT config to the model 
     print 
     ( 
     "Applying PEFT configuration..." 
     ) 
     model 
     = 
     get_peft_model 
     ( 
     model 
     , 
     peft_config 
     ) 
     model 
     . 
     print_trainable_parameters 
     () 
     # --- 6. Configure Training Arguments --- 
     training_args 
     = 
     SFTConfig 
     ( 
     output_dir 
     = 
     args 
     . 
     output_dir 
     , 
     max_seq_length 
     = 
     args 
     . 
     max_seq_length 
     , 
     num_train_epochs 
     = 
     args 
     . 
     num_train_epochs 
     , 
     per_device_train_batch_size 
     = 
     args 
     . 
     per_device_train_batch_size 
     , 
     gradient_accumulation_steps 
     = 
     args 
     . 
     gradient_accumulation_steps 
     , 
     learning_rate 
     = 
     args 
     . 
     learning_rate 
     , 
     logging_steps 
     = 
     args 
     . 
     logging_steps 
     , 
     save_strategy 
     = 
     args 
     . 
     save_strategy 
     , 
     save_steps 
     = 
     args 
     . 
     save_steps 
     , 
     packing 
     = 
     True 
     , 
     gradient_checkpointing 
     = 
     True 
     , 
     gradient_checkpointing_kwargs 
     = 
     { 
     "use_reentrant" 
     : 
     False 
     }, 
     optim 
     = 
     "adamw_torch" 
     , 
     fp16 
     = 
     True 
     if 
     torch_dtype_obj 
     == 
     torch 
     . 
     float16 
     else 
     False 
     , 
     bf16 
     = 
     True 
     if 
     torch_dtype_obj 
     == 
     torch 
     . 
     bfloat16 
     else 
     False 
     , 
     max_grad_norm 
     = 
     0.3 
     , 
     warmup_ratio 
     = 
     0.03 
     , 
     lr_scheduler_type 
     = 
     "constant" 
     , 
     push_to_hub 
     = 
     False 
     , 
     report_to 
     = 
     "tensorboard" 
     , 
     dataset_kwargs 
     = 
     { 
     "add_special_tokens" 
     : 
     False 
     , 
     "append_concat_token" 
     : 
     True 
     , 
     } 
     ) 
     # --- 7. Create Trainer and Start Training --- 
     trainer 
     = 
     SFTTrainer 
     ( 
     model 
     = 
     model 
     , 
     args 
     = 
     training_args 
     , 
     train_dataset 
     = 
     dataset 
     [ 
     "train" 
     ], 
     eval_dataset 
     = 
     dataset 
     [ 
     "test" 
     ], 
     formatting_func 
     = 
     formatting_func 
     , 
     ) 
     print 
     ( 
     "Starting training..." 
     ) 
     trainer 
     . 
     train 
     () 
     print 
     ( 
     "Training finished." 
     ) 
     # --- 8. Save the final model --- 
     print 
     ( 
     f 
     "Saving final model to 
     { 
     args 
     . 
     output_dir 
     } 
     " 
     ) 
     trainer 
     . 
     save_model 
     () 
     if 
     __name__ 
     == 
     "__main__" 
     : 
     main 
     () 
     
    

Upload scripts to the Slurm cluster

To upload the scripts that you created in the previous section to the Slurm cluster, follow these steps:

  1. To identify your login node, list all A4 VMs in your project:

     gcloud  
    compute  
    instances  
    list  
    --filter = 
     "machineType:a4-highgpu-8g" 
     
    

    The name of the login node is similar to a4-high-login-001 .

  2. Upload your scripts to the login node's home directory:

     gcloud  
    compute  
    scp  
     \ 
      
    --project = 
     PROJECT_ID 
      
     \ 
      
    --zone = 
     ZONE 
      
     \ 
      
    --tunnel-through-iap  
     \ 
      
    ./train.py  
     \ 
      
    ./requirements.txt  
     \ 
      
    ./submit.slurm  
     \ 
      
    ./install_environment.sh  
     \ 
      
    ./accelerate_config.yaml  
     \ 
      
     " LOGIN_NODE_NAME 
    " 
    :~/ 
    

    Replace LOGIN_NODE_NAME with the name of the login node.

Connect to the Slurm cluster

Connect to the Slurm cluster by connecting to the login node through SSH:

 gcloud  
compute  
ssh  
 LOGIN_NODE_NAME 
  
 \ 
  
--project = 
 PROJECT_ID 
  
 \ 
  
--tunnel-through-iap  
 \ 
  
--zone = 
 ZONE 
 

Install frameworks and tools

After you connect to the login node, install frameworks and tools by following these steps:

  1. Create an environment variable for your Hugging Face access token:

      export 
      
     HUGGING_FACE_TOKEN 
     = 
     " HUGGING_FACE_TOKEN 
    " 
     
    
  2. Set up a Python virtual environment with all the required dependencies:

     chmod  
    +x  
    install_environment.sh
    ./install_environment.sh 
    

Start your fine-tuning workload

To start your fine-tuning workload, follow these steps:

  1. Submit the job to the Slurm scheduler:

     sbatch  
    submit.slurm 
    
  2. On the login node in your Slurm cluster, you can monitor the job's progress by checking the output files created in your home directory:

     tail  
    -f  
    slurm-gemma3-finetune.err 
    

    If your job successfully starts, then the .err file shows a progress bar that updates as your job progresses.

Monitor your workload

You can monitor the use of the GPUs in your Slurm cluster to verify that your fine-tuning job is efficiently running. To do so, open the following link in your browser:

 https://console.cloud.google.com/monitoring/metrics-explorer?project= PROJECT_ID 
&pageState=%7B%22xyChart%22%3A%7B%22dataSets%22%3A%5B%7B%22timeSeriesFilter%22%3A%7B%22filter%22%3A%22metric.type%3D%5C%22agent.googleapis.com%2Fgpu%2Futilization%5C%22%20resource.type%3D%5C%22gce_instance%5C%22%22%2C%22perSeriesAligner%22%3A%22ALIGN_MEAN%22%7D%2C%22plotType%22%3A%22LINE%22%7D%5D%7D%7D 

When you monitor your workload, you can see the following:

  • GPUs usage: for a healthy fine-tuning job, you can expect to see the usage of all your 16 GPUs (eight GPUs for each VM in the cluster) rise and stabilize to a specific level throughout your training.

  • Job duration: the job should take approximately one hour to complete.

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.

Delete your project

Delete a Google Cloud project:

gcloud projects delete PROJECT_ID 

Delete your Slurm cluster

To delete your Slurm cluster, follow these steps:

  1. Go to the cluster-toolkit directory.

  2. Destroy the Terraform file and all created resources:

     ./gcluster  
    destroy  
    a4-high  
    --auto-approve 
    

What's next

Design a Mobile Site
View Site in Mobile | Classic
Share by: