Use the Spark Spanner connector

This page shows you how to create a Dataproc cluster that uses the Spark Spanner connector to read data from Spanner using Apache Spark

The Spanner connector works with Spark to read data from the Spanner database using the Spanner Java library . The Spanner connector supports reading Spanner tables and graphs into Spark DataFrames and GraphFrames .

Costs

In this document, you use the following billable components of Google Cloud:

  • Dataproc
  • Spanner
  • Cloud Storage

To generate a cost estimate based on your projected usage, use the pricing calculator .

New Google Cloud users might be eligible for a free trial .

Before you begin

Before using the Spanner connector in this tutorial, set up a Dataproc cluster and a Spanner instance and database .

Set up a Dataproc cluster

Create a Dataproc cluster or use an existing Dataproc cluster that has the following settings:

Set up a Spanner instance with a Singers database table

Create a Spanner instance with a database that contains a Singers table. Note the Spanner instance ID and database ID.

Use the Spanner connector with Spark

The Spanner connector is available for Spark versions 3.1+ . You specify the connector version as part of the Cloud Storage connector JAR file specification when you submit a job to a Dataproc cluster.

Example:gcloud CLI Spark job submission with the Spanner connector.

gcloud dataproc jobs submit spark \
    --jars=gs://spark-lib/spanner/spark-3.1-spanner- CONNECTOR_VERSION 
.jar \
    ... [other job submission flags]

Replace the following:

CONNECTOR_VERSION : Spanner connector version. Choose the Spanner connector version from the version list in the GitHub GoogleCloudDataproc/spark-spanner-connector repository.

Read Spanner tables

You can use Python or Scala to read Spanner table data into a Spark Dataframe using the Spark data source API .

PySpark

You can run the example PySpark code in this section on your cluster by submitting the job to the Dataproc service or by running the job from the spark-submit REPL on the cluster master node.

Dataproc job

  1. Create a singers.py file in using a local text editor or in Cloud Shell using the pre-installed vi , vim , or nano text editor.
    1. After populating the placehoder variables, paste the following code into the singers.py file. Note that the Spanner Data Boost feature is enabled, which has near-zero impact on the main Spanner instance.
       #!/usr/bin/env python 
       """Spanner PySpark read example.""" 
       from 
        
       pyspark.sql 
        
       import 
       SparkSession 
       spark 
       = 
       SparkSession 
      \ . 
       builder 
      \ . 
       master 
       ( 
       'yarn' 
       ) 
      \ . 
       appName 
       ( 
       'spark-spanner-demo' 
       ) 
      \ . 
       getOrCreate 
       () 
       # Load data from Spanner. 
       singers 
       = 
       spark 
       . 
       read 
       . 
       format 
       ( 
       'cloud-spanner' 
       ) 
      \ . 
       option 
       ( 
       "projectId" 
       , 
       " PROJECT_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "instanceId" 
       , 
       " INSTANCE_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "databaseId" 
       , 
       " DATABASE_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "table" 
       , 
       " TABLE_NAME 
      " 
       ) 
      \ . 
       option 
       ( 
       "enableDataBoost" 
       , 
       "true" 
       ) 
      \ . 
       load 
       () 
       singers 
       . 
       createOrReplaceTempView 
       ( 
       'Singers' 
       ) 
       # Read from Singers 
       result 
       = 
       spark 
       . 
       sql 
       ( 
       'SELECT * FROM Singers' 
       ) 
       result 
       . 
       show 
       () 
       result 
       . 
       printSchema 
       () 
      

      Replace the following:

      1. PROJECT_ID : Your Google Cloud project ID. Project IDs are listed in the Project infosection on the Google Cloud console Dashboard .
      2. INSTANCE_ID , DATABASE_ID , and TABLE_NAME : See Set up a Spanner instance with Singers database table .
    2. Save the singers.py file.
  2. Submit the job to the Dataproc service using the Google Cloud console, gcloud CLI or Dataproc API.

    Example:gcloud CLI job submission with the Spanner connector.

    gcloud dataproc jobs submit pyspark singers.py \
        --cluster= CLUSTER_NAME 
    \
        --region= REGION 
    \
        --jars=gs://spark-lib/spanner/spark-3.1-spanner- CONNECTOR_VERSION 
    .jar

    Replace the following:

    1. CLUSTER_NAME : The name of the new cluster.
    2. REGION : An available Compute Engine region to run the workload.
    3. CONNECTOR_VERSION : Spanner connector version. Choose the Spanner connector version from the version list in the GitHub GoogleCloudDataproc/spark-spanner-connector repository.

spark-submit job

  1. Connect to the Dataproc cluster master node using SSH.
    1. Go to the Dataproc Clusters page in the Google Cloud console, then click the name of your cluster.
    2. On the Cluster detailspage, select the VM Instances tab. Then click SSH to the right of the name of the cluster master node.
      Screenshot of the Dataproc Cluster details page in the Google Cloud console, showing the SSH button used to connect to the cluster master node.

      A browser window opens at your home directory on the master node.

      Connected, host fingerprint: ssh-rsa 2048 ...
          ...
          user@clusterName-m:~$
  2. Create a singers.py file on the master node using the pre-installed vi , vim , or nano text editor.
    1. Paste the following code into the singers.py file. Note that the Spanner Data Boost feature is enabled, which has near-zero impact on the main Spanner instance.
       #!/usr/bin/env python 
       """Spanner PySpark read example.""" 
       from 
        
       pyspark.sql 
        
       import 
       SparkSession 
       spark 
       = 
       SparkSession 
      \ . 
       builder 
      \ . 
       master 
       ( 
       'yarn' 
       ) 
      \ . 
       appName 
       ( 
       'spark-spanner-demo' 
       ) 
      \ . 
       getOrCreate 
       () 
       # Load data from Spanner. 
       singers 
       = 
       spark 
       . 
       read 
       . 
       format 
       ( 
       'cloud-spanner' 
       ) 
      \ . 
       option 
       ( 
       "projectId" 
       , 
       " PROJECT_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "instanceId" 
       , 
       " INSTANCE_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "databaseId" 
       , 
       " DATABASE_ID 
      " 
       ) 
      \ . 
       option 
       ( 
       "table" 
       , 
       " TABLE_NAME 
      " 
       ) 
      \ . 
       option 
       ( 
       "enableDataBoost" 
       , 
       "true" 
       ) 
      \ . 
       load 
       () 
       singers 
       . 
       createOrReplaceTempView 
       ( 
       'Singers' 
       ) 
       # Read from Singers 
       result 
       = 
       spark 
       . 
       sql 
       ( 
       'SELECT * FROM Singers' 
       ) 
       result 
       . 
       show 
       () 
       result 
       . 
       printSchema 
       () 
      

      Replace the following:

      1. PROJECT_ID : Your Google Cloud project ID. Project IDs are listed in the Project infosection on the Google Cloud console Dashboard .
      2. INSTANCE_ID , DATABASE_ID , and TABLE_NAME : See Set up a Spanner instance with Singers database table .
    2. Save the singers.py file.
  3. Run singers.py with spark-submit to create the Spanner Singers table.
    spark-submit --jars gs://spark-lib/spanner/spark-3.1-spanner- CONNECTOR_VERSION 
    .jar singers.py

    Replace the following:

    1. CONNECTOR_VERSION : Spanner connector version. Choose the Spanner connector version from the version list in the GitHub GoogleCloudDataproc/spark-spanner-connector repository.

    The output is:

    ...
    +--------+---------+--------+---------+-----------+
    |SingerId|FirstName|LastName|BirthDate|LastUpdated|
    +--------+---------+--------+---------+-----------+
    |       1|     Marc|Richards|     null|       null|
    |       2| Catalina|   Smith|     null|       null|
    |       3|    Alice| Trentor|     null|       null|
    +--------+---------+--------+---------+-----------+
    
    root
     |-- SingerId: long (nullable = false)
     |-- FirstName: string (nullable = true)
     |-- LastName: string (nullable = true)
     |-- BirthDate: date (nullable = true)
     |-- LastUpdated: timestamp (nullable = true)
    only showing top 20 rows

Scala

To run the example Scala code on your cluster, complete the following steps:

  1. Connect to the Dataproc cluster master node using SSH.
    1. Go to the Dataproc Clusters page in the Google Cloud console, then click the name of your cluster.
    2. On the Cluster detailspage, select the VM Instances tab. Then click SSH to the right of the name of the cluster master node.Dataproc Cluster details page in the Google Cloud console.

      A browser window opens at your home directory on the master node.

      Connected, host fingerprint: ssh-rsa 2048 ...
          ...
          user@clusterName-m:~$
  2. Create a singers.scala file on the master node using the pre-installed vi , vim , or nano text editor.
    1. Paste the following code into the singers.scala file. Note that the Spanner Data Boost feature is enabled, which has near-zero impact on the main Spanner instance.
       object 
        
       singers 
        
       { 
        
       def 
        
       main 
       (): 
        
       Unit 
        
       = 
        
       { 
        
       /* 
       * Uncomment (use the following code) if you are not running in spark-shell. 
       * 
       import org.apache.spark.sql.SparkSession 
       val spark = SparkSession.builder() 
       .appName("spark-spanner-demo") 
       .getOrCreate() 
       */ 
        
       // Load data in from Spanner. See 
        
       // https://github.com/GoogleCloudDataproc/spark-spanner-connector/blob/main/README.md#properties 
        
       // for option information. 
        
       val 
        
       singersDF 
        
       = 
        
       ( 
       spark 
       . 
       read 
       . 
       format 
       ( 
       "cloud-spanner" 
       ) 
        
       . 
       option 
       ( 
       "projectId" 
       , 
        
       " PROJECT_ID 
      " 
       ) 
        
       . 
       option 
       ( 
       "instanceId" 
       , 
        
       " INSTANCE_ID 
      " 
       ) 
        
       . 
       option 
       ( 
       "databaseId" 
       , 
        
       " DATABASE_ID 
      " 
       ) 
        
       . 
       option 
       ( 
       "table" 
       , 
        
       " TABLE_NAME 
      " 
       ) 
        
       . 
       option 
       ( 
       "enableDataBoost" 
       , 
        
       true 
       ) 
        
       . 
       load 
       () 
        
       . 
       cache 
       ()) 
        
       singersDF 
       . 
       createOrReplaceTempView 
       ( 
       "Singers" 
       ) 
        
       // Load the Singers table. 
        
       val 
        
       result 
        
       = 
        
       spark 
       . 
       sql 
       ( 
       "SELECT * FROM Singers" 
       ) 
        
       result 
       . 
       show 
       () 
        
       result 
       . 
       printSchema 
       () 
        
       } 
       } 
        
      

      Replace the following:

      1. PROJECT_ID : Your Google Cloud project ID. Project IDs are listed in the Project infosection on the Google Cloud console Dashboard .
      2. INSTANCE_ID , DATABASE_ID , and TABLE_NAME : See Set up a Spanner instance with Singers database table .
    2. Save the singers.scala file.
  3. Launch the spark-shell REPL.
    $ spark-shell --jars=gs://spark-lib/spanner/spark-3.1-spanner- CONNECTOR_VERSION 
    .jar

    Replace the following:

    CONNECTOR_VERSION : Spanner connector version. Choose the Spanner connector version from the version list in the GitHub GoogleCloudDataproc/spark-spanner-connector repository.

  4. Run singers.scala with the :load singers.scala command to create the Spanner Singers table. The output listing displays examplesfrom the Singers output.
    > :load singers.scala
    Loading singers.scala...
    defined object singers
    > singers.main()
    ...
    +--------+---------+--------+---------+-----------+
    |SingerId|FirstName|LastName|BirthDate|LastUpdated|
    +--------+---------+--------+---------+-----------+
    |       1|     Marc|Richards|     null|       null|
    |       2| Catalina|   Smith|     null|       null|
    |       3|    Alice| Trentor|     null|       null|
    +--------+---------+--------+---------+-----------+
    
    root
     |-- SingerId: long (nullable = false)
     |-- FirstName: string (nullable = true)
     |-- LastName: string (nullable = true)
     |-- BirthDate: date (nullable = true)
     |-- LastUpdated: timestamp (nullable = true)

Read Spanner graphs

The Spanner connector supports exporting the graph into separate node and edge DataFrames as well as exporting into GraphFrames directly.

The following example exports a Spanner into a GraphFrame . It uses the Python SpannerGraphConnector class, included in the Spanner connector jar, to read the Spanner Graph .

 from 
  
 pyspark.sql 
  
 import 
 SparkSession 
 connector_jar 
 = 
 "gs://spark-lib/spanner/spark-3.1-spanner- CONNECTOR_VERSION 
.jar" 
 spark 
 = 
 ( 
 SparkSession 
 . 
 builder 
 . 
 appName 
 ( 
 "spanner-graphframe-graphx-example" 
 ) 
 . 
 config 
 ( 
 "spark.jars.packages" 
 , 
 "graphframes:graphframes:0.8.4-spark3.5-s_2.12" 
 ) 
 . 
 config 
 ( 
 "spark.jars" 
 , 
 connector_jar 
 ) 
 . 
 getOrCreate 
 ()) 
 spark 
 . 
 sparkContext 
 . 
 addPyFile 
 ( 
 connector_jar 
 ) 
 from 
  
 spannergraph 
  
 import 
 SpannerGraphConnector 
 connector 
 = 
 ( 
 SpannerGraphConnector 
 () 
 . 
 spark 
 ( 
 spark 
 ) 
 . 
 project 
 ( 
 " PROJECT_ID 
" 
 ) 
 . 
 instance 
 ( 
 " INSTANCE_ID 
" 
 ) 
 . 
 database 
 ( 
 " DATABASE_ID 
" 
 ) 
 . 
 graph 
 ( 
 " GRAPH_ID 
" 
 )) 
 g 
 = 
 connector 
 . 
 load_graph 
 () 
 g 
 . 
 vertices 
 . 
 show 
 () 
 g 
 . 
 edges 
 . 
 show 
 () 

Replace the following:

  • CONNECTOR_VERSION : Spanner connector version. Choose the Spanner connector version from the version list in the GitHub GoogleCloudDataproc/spark-spanner-connector repository.
  • PROJECT_ID : Your Google Cloud project ID. Project IDs are listed in the Project infosection on the Google Cloud console Dashboard .
  • INSTANCE_ID , DATABASE_ID , and TABLE_NAME Insert the instance, database, and graph IDs.

To export node and edge DataFrames instead of GraphFrames, use load_dfs instead:

 df_vertices 
 , 
 df_edges 
 , 
 df_id_map 
 = 
 connector 
 . 
 load_dfs 
 () 

Clean up

To avoid incurring ongoing charges to your Google Cloud account, you can stop or delete your Dataproc cluster and delete your Spanner instance .

What's next

Design a Mobile Site
View Site in Mobile | Classic
Share by: