Reference documentation and code samples for the Google Cloud Notebooks V1 Client class ExecutionTemplate.
The description a notebook execution workload.
Generated from protobuf message google.cloud.notebooks.v1.ExecutionTemplate
Namespace
Google \ Cloud \ Notebooks \ V1Methods
__construct
Constructor.
data
array
Optional. Data for populating the Message object.
↳ scale_tier
int
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
↳ master_type
string
Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when scaleTier
is set to CUSTOM
. You can use certain Compute Engine machine types directly in this field. The following types are supported: - n1-standard-4
- n1-standard-8
- n1-standard-16
- n1-standard-32
- n1-standard-64
- n1-standard-96
- n1-highmem-2
- n1-highmem-4
- n1-highmem-8
- n1-highmem-16
- n1-highmem-32
- n1-highmem-64
- n1-highmem-96
- n1-highcpu-16
- n1-highcpu-32
- n1-highcpu-64
- n1-highcpu-96
Alternatively, you can use the following legacy machine types: - standard
- large_model
- complex_model_s
- complex_model_m
- complex_model_l
- standard_gpu
- complex_model_m_gpu
- complex_model_l_gpu
- standard_p100
- complex_model_m_p100
- standard_v100
- large_model_v100
- complex_model_m_v100
- complex_model_l_v100
Finally, if you want to use a TPU for training, specify cloud_tpu
in this field. Learn more about the special configuration options for training with TPU
.
↳ accelerator_config
Google\Cloud\Notebooks\V1\ExecutionTemplate\SchedulerAcceleratorConfig
Configuration (count and accelerator type) for hardware running notebook execution.
↳ labels
array| Google\Protobuf\Internal\MapField
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
↳ input_notebook_file
string
Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
↳ container_image_uri
string
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
↳ output_notebook_folder
string
Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
↳ params_yaml_file
string
Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html
on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
↳ parameters
string
Parameters used within the 'input_notebook_file' notebook.
↳ service_account
string
The email address of a service account to use when running the execution. You must have the iam.serviceAccounts.actAs
permission for the specified service account.
↳ job_type
int
The type of Job to be used on this execution.
↳ dataproc_parameters
Google\Cloud\Notebooks\V1\ExecutionTemplate\DataprocParameters
Parameters used in Dataproc JobType executions.
↳ vertex_ai_parameters
Google\Cloud\Notebooks\V1\ExecutionTemplate\VertexAIParameters
Parameters used in Vertex AI JobType executions.
↳ kernel_spec
string
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
↳ tensorboard
string
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}
getScaleTier
Required. Scale tier of the hardware used for notebook execution.
DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
int
setScaleTier
Required. Scale tier of the hardware used for notebook execution.
DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
var
int
$this
getMasterType
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to CUSTOM
.
You can use certain Compute Engine machine types directly in this field. The following types are supported:
-
n1-standard-4
-
n1-standard-8
-
n1-standard-16
-
n1-standard-32
-
n1-standard-64
-
n1-standard-96
-
n1-highmem-2
-
n1-highmem-4
-
n1-highmem-8
-
n1-highmem-16
-
n1-highmem-32
-
n1-highmem-64
-
n1-highmem-96
-
n1-highcpu-16
-
n1-highcpu-32
-
n1-highcpu-64
-
n1-highcpu-96
Alternatively, you can use the following legacy machine types: -
standard
-
large_model
-
complex_model_s
-
complex_model_m
-
complex_model_l
-
standard_gpu
-
complex_model_m_gpu
-
complex_model_l_gpu
-
standard_p100
-
complex_model_m_p100
-
standard_v100
-
large_model_v100
-
complex_model_m_v100
-
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the special configuration options for training with TPU .
string
setMasterType
Specifies the type of virtual machine to use for your training
job's master worker. You must specify this field when scaleTier
is set to CUSTOM
.
You can use certain Compute Engine machine types directly in this field. The following types are supported:
-
n1-standard-4
-
n1-standard-8
-
n1-standard-16
-
n1-standard-32
-
n1-standard-64
-
n1-standard-96
-
n1-highmem-2
-
n1-highmem-4
-
n1-highmem-8
-
n1-highmem-16
-
n1-highmem-32
-
n1-highmem-64
-
n1-highmem-96
-
n1-highcpu-16
-
n1-highcpu-32
-
n1-highcpu-64
-
n1-highcpu-96
Alternatively, you can use the following legacy machine types: -
standard
-
large_model
-
complex_model_s
-
complex_model_m
-
complex_model_l
-
standard_gpu
-
complex_model_m_gpu
-
complex_model_l_gpu
-
standard_p100
-
complex_model_m_p100
-
standard_v100
-
large_model_v100
-
complex_model_m_v100
-
complex_model_l_v100
Finally, if you want to use a TPU for training, specifycloud_tpu
in this field. Learn more about the special configuration options for training with TPU .
var
string
$this
getAcceleratorConfig
Configuration (count and accelerator type) for hardware running notebook execution.
hasAcceleratorConfig
clearAcceleratorConfig
setAcceleratorConfig
Configuration (count and accelerator type) for hardware running notebook execution.
$this
getLabels
Labels for execution.
If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
setLabels
Labels for execution.
If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
$this
getInputNotebookFile
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
string
setInputNotebookFile
Path to the notebook file to execute.
Must be in a Google Cloud Storage bucket.
Format: gs://{bucket_name}/{folder}/{notebook_file_name}
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
var
string
$this
getContainerImageUri
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string
setContainerImageUri
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
var
string
$this
getOutputNotebookFolder
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
string
setOutputNotebookFolder
Path to the notebook folder to write to.
Must be in a Google Cloud Storage bucket path.
Format: gs://{bucket_name}/{folder}
Ex: gs://notebook_user/scheduled_notebooks
var
string
$this
getParamsYamlFile
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html
on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
string
setParamsYamlFile
Parameters to be overridden in the notebook during execution.
Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html
on
how to specifying parameters in the input notebook and pass them here
in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
var
string
$this
getParameters
Parameters used within the 'input_notebook_file' notebook.
string
setParameters
Parameters used within the 'input_notebook_file' notebook.
var
string
$this
getServiceAccount
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
string
setServiceAccount
The email address of a service account to use when running the execution.
You must have the iam.serviceAccounts.actAs
permission for the specified
service account.
var
string
$this
getJobType
The type of Job to be used on this execution.
int
setJobType
The type of Job to be used on this execution.
var
int
$this
getDataprocParameters
Parameters used in Dataproc JobType executions.
hasDataprocParameters
setDataprocParameters
Parameters used in Dataproc JobType executions.
$this
getVertexAiParameters
Parameters used in Vertex AI JobType executions.
hasVertexAiParameters
setVertexAiParameters
Parameters used in Vertex AI JobType executions.
$this
getKernelSpec
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
string
setKernelSpec
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
var
string
$this
getTensorboard
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.
Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}
string
setTensorboard
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.
Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}
var
string
$this
getJobParameters
string