Google Cloud Ai Platform V1 Client - Class IndexDatapoint (1.15.0)

Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class IndexDatapoint.

A datapoint of Index.

Generated from protobuf message google.cloud.aiplatform.v1.IndexDatapoint

Namespace

Google \ Cloud \ AIPlatform \ V1

Methods

__construct

Constructor.

Parameters
Name
Description
data
array

Optional. Data for populating the Message object.

↳ datapoint_id
string

Required. Unique identifier of the datapoint.

↳ feature_vector
array

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].

↳ sparse_embedding
IndexDatapoint\SparseEmbedding

Optional. Feature embedding vector for sparse index.

↳ restricts
array< IndexDatapoint\Restriction >

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering

↳ numeric_restricts
array< IndexDatapoint\NumericRestriction >

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.

↳ crowding_tag
IndexDatapoint\CrowdingTag

Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.

getDatapointId

Required. Unique identifier of the datapoint.

Returns
Type
Description
string

setDatapointId

Required. Unique identifier of the datapoint.

Parameter
Name
Description
var
string
Returns
Type
Description
$this

getFeatureVector

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].

Returns
Type
Description

setFeatureVector

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].

Parameter
Name
Description
var
float[]
Returns
Type
Description
$this

getSparseEmbedding

Optional. Feature embedding vector for sparse index.

Returns
Type
Description

hasSparseEmbedding

clearSparseEmbedding

setSparseEmbedding

Optional. Feature embedding vector for sparse index.

Parameter
Name
Description
Returns
Type
Description
$this

getRestricts

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering

Returns
Type
Description

setRestricts

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering

Parameter
Name
Description
Returns
Type
Description
$this

getNumericRestricts

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.

Returns
Type
Description

setNumericRestricts

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.

Parameter
Name
Description
Returns
Type
Description
$this

getCrowdingTag

Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.

Returns
Type
Description

hasCrowdingTag

clearCrowdingTag

setCrowdingTag

Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.

Parameter
Name
Description
Returns
Type
Description
$this
Design a Mobile Site
View Site in Mobile | Classic
Share by: