Class DataFrame (0.6.0)

  DataFrame 
 ( 
 data 
 = 
 None 
 , 
 index 
 : 
 vendored_pandas_typing 
 . 
 Axes 
 | 
 None 
 = 
 None 
 , 
 columns 
 : 
 vendored_pandas_typing 
 . 
 Axes 
 | 
 None 
 = 
 None 
 , 
 dtype 
 : 
 typing 
 . 
 Optional 
 [ 
 bigframes 
 . 
 dtypes 
 . 
 DtypeString 
 | 
 bigframes 
 . 
 dtypes 
 . 
 Dtype 
 ] 
 = 
 None 
 , 
 copy 
 : 
 typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 = 
 None 
 , 
 * 
 , 
 session 
 : 
 typing 
 . 
 Optional 
 [ 
 bigframes 
 . 
 session 
 . 
 Session 
 ] 
 = 
 None 
 ) 
 

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.

Properties

axes

Return a list representing the axes of the DataFrame.

It has the row axis labels and column axis labels as the only members. They are returned in that order.

Examples

 df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df.axes
[RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'],
dtype='object')] 

columns

The column labels of the DataFrame.

dtypes

Return the dtypes in the DataFrame.

This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types aren't supported yet in BigQuery DataFrames.

empty

Indicates whether Series/DataFrame is empty.

True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.

Returns
Type
Description
bool
If Series/DataFrame is empty, return True, if not return False.

iloc

Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

  • Not supported yetAn integer, e.g. 5 .
  • Not supported yetA list or array of integers, e.g. [4, 3, 0] .
  • A slice object with ints, e.g. 1:7 .
  • Not supported yetA boolean array.
  • Not supported yetA callable function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value.
  • Not supported yetA tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1) .

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

index

The index (row labels) of the DataFrame.

The index of a DataFrame is a series of labels that identify each row. The labels can be integers, strings, or any other hashable type. The index is used for label-based access and alignment, and can be accessed or modified using this attribute.

loc

Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

  • A single label, e.g. 5 or 'a' , (note that 5 is interpreted as a label of the index, and neveras an integer position along the index).
  • A list of labels, e.g. ['a', 'b', 'c'] .
  • A boolean series of the same length as the axis being sliced, e.g. [True, False, True] .
  • An alignable Index. The index of the returned selection will be the input.
  • Not supported yetAn alignable boolean Series. The index of the key will be aligned before masking.
  • Not supported yetA slice object with labels, e.g. 'a':'f' . Note: contrary to usual python slices, boththe start and the stop are included.
  • Not supported yetA callable function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above).
Exceptions
Type
Description
NotImplementError
if the inputs are not supported.

ndim

Return an int representing the number of axes / array dimensions.

Returns
Type
Description
int
Return 1 if Series. Otherwise return 2 if DataFrame.

query_job

BigQuery job metadata for the most recent query.

shape

Return a tuple representing the dimensionality of the DataFrame.

size

Return an int representing the number of elements in this object.

Returns
Type
Description
int
Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.

sql

Compiles this DataFrame's expression tree to SQL.

values

Return the values of DataFrame in the form of a NumPy array.

Methods

__array_ufunc__

  __array_ufunc__ 
 ( 
 ufunc 
 : 
 numpy 
 . 
 ufunc 
 , 
 method 
 : 
 str 
 , 
 * 
 inputs 
 , 
 ** 
 kwargs 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Used to support numpy ufuncs. See: https://numpy.org/doc/stable/reference/ufuncs.html

__getitem__

  __getitem__ 
 ( 
 key 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ], 
 pandas 
 . 
 core 
 . 
 indexes 
 . 
 base 
 . 
 Index 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 ] 
 ) 
 

Gets the specified column(s) from the DataFrame.

__repr__

  __repr__ 
 () 
 - 
> str 
 

Converts a DataFrame to a string. Calls to_pandas.

Only represents the first <xref uid="bigframes.options">bigframes.options</xref>.display.max_rows .

__setitem__

  __setitem__ 
 ( 
 key 
 : 
 str 
 , 
 value 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 int 
 , 
 float 
 , 
 typing 
 . 
 Callable 
 ] 
 ) 
 

Modify or insert a column into the DataFrame.

Note: This does notmodify the original table the DataFrame was derived from.

abs

  abs 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return a Series/DataFrame with absolute numeric value of each element.

This function only applies to elements that are all numeric.

add

  add 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get addition of DataFrame and other, element-wise (binary operator + ).

Equivalent to dataframe + other . With reverse version, radd .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

add_prefix

  add_prefix 
 ( 
 prefix 
 : 
 str 
 , 
 axis 
 : 
 int 
 | 
 str 
 | 
 None 
 = 
 None 
 ) 
 - 
> DataFrame 
 

Prefix labels with string prefix .

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters
Name
Description
prefix
str

The string to add before each label.

axis
int or str or None, default None

{{0 or 'index', 1 or 'columns', None}} , default None. Axis to add prefix on.

add_suffix

  add_suffix 
 ( 
 suffix 
 : 
 str 
 , 
 axis 
 : 
 int 
 | 
 str 
 | 
 None 
 = 
 None 
 ) 
 - 
> DataFrame 
 

Suffix labels with string suffix .

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

agg

  agg 
 ( 
 func 
 : 
 str 
 | 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> DataFrame 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 

Aggregate using one or more operations over the specified axis.

Parameter
Name
Description
func
function

Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. ['sum', 'mean'] .

Returns
Type
Description
Aggregated results.

aggregate

  aggregate 
 ( 
 func 
 : 
 str 
 | 
 typing 
 . 
 Sequence 
 [ 
 str 
 ]) 
 - 
> DataFrame 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 

Aggregate using one or more operations over the specified axis.

Parameter
Name
Description
func
function

Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. ['sum', 'mean'] .

Returns
Type
Description
Aggregated results.

align

  align 
 ( 
 other 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 join 
 : 
 str 
 = 
 "outer" 
 , 
 axis 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ]] 
 = 
 None 
 , 
 ) 
 - 
> typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 ] 
 

Align two objects on their axes with the specified join method.

Join method is specified for each axis Index.

Parameters
Name
Description
join
{{'outer', 'inner', 'left', 'right'}}, default 'outer'

Type of alignment to be performed. left: use only keys from left frame, preserve key order. right: use only keys from right frame, preserve key order. outer: use union of keys from both frames, sort keys lexicographically. inner: use intersection of keys from both frames, preserve the order of the left keys.

axis
allowed axis of the other object, default None

Align on index (0), columns (1), or both (None).

Returns
Type
Description
tuple of (DataFrame, type of other)
Aligned objects.

all

  all 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 bool_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return whether all elements are True, potentially over an axis.

Returns True unless there at least one element within a Series or along a DataFrame axis that is False or equivalent (e.g. zero or empty).

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

bool_only
bool. default False

Include only boolean columns.

Returns
Type
Description
Series if all elements are True.

any

  any 
 ( 
 * 
 , 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 bool_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return whether any element is True, potentially over an axis.

Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

bool_only
bool. default False

Include only boolean columns.

apply

  apply 
 ( 
 func 
 , 
 * 
 , 
 args 
 : 
 typing 
 . 
 Tuple 
 = 
 (), 
 ** 
 kwargs 
 ) 
 

Apply a function along an axis of the DataFrame.

Objects passed to the function are Series objects whose index is the DataFrame's index ( axis=0 ) the final return type is inferred from the return type of the applied function.

Parameters
Name
Description
func
function

Function to apply to each column or row.

args
tuple

Positional arguments to pass to func in addition to the array/series.

Returns
Type
Description
pandas.Series or bigframes.DataFrame
Result of applying func along the given axis of the DataFrame.

applymap

  applymap 
 ( 
 func 
 , 
 na_action 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Apply a function to a Dataframe elementwise.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameter
Name
Description
na_action
Optional[str], default None

{None, 'ignore'} , default None. If ‘ignore’, propagate NaN values, without passing them to func.

Returns
Type
Description
bigframes.dataframe.DataFrame
Transformed DataFrame.

assign

  assign 
 ( 
 ** 
 kwargs 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Assign new columns to a DataFrame.

Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.

Returns
Type
Description
bigframes.dataframe.DataFrame
A new DataFrame with the new columns in addition to all the existing columns.

astype

  astype 
 ( 
 dtype 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Literal 
 [ 
 "boolean" 
 , 
 "Float64" 
 , 
 "Int64" 
 , 
 "string" 
 , 
 "string[pyarrow]" 
 , 
 "timestamp[us, tz=UTC][pyarrow]" 
 , 
 "timestamp[us][pyarrow]" 
 , 
 "date32[day][pyarrow]" 
 , 
 "time64[us][pyarrow]" 
 , 
 ], 
 pandas 
 . 
 core 
 . 
 arrays 
 . 
 boolean 
 . 
 BooleanDtype 
 , 
 pandas 
 . 
 core 
 . 
 arrays 
 . 
 floating 
 . 
 Float64Dtype 
 , 
 pandas 
 . 
 core 
 . 
 arrays 
 . 
 integer 
 . 
 Int64Dtype 
 , 
 pandas 
 . 
 core 
 . 
 arrays 
 . 
 string_ 
 . 
 StringDtype 
 , 
 pandas 
 . 
 core 
 . 
 dtypes 
 . 
 dtypes 
 . 
 ArrowDtype 
 , 
 ] 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Cast a pandas object to a specified dtype dtype .

Parameter
Name
Description
dtype
str or pandas.ExtensionDtype

A dtype supported by BigQuery DataFrame include 'boolean','Float64','Int64', 'string', 'tring[pyarrow]','timestamp[us, tz=UTC][pyarrow]', 'timestamp us][pyarrow] ','date32 day][pyarrow] ','time64 us][pyarrow] ' A pandas.ExtensionDtype include pandas.BooleanDtype(), pandas.Float64Dtype(), pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"), pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")), pd.ArrowDtype(pa.timestamp("us")), pd.ArrowDtype(pa.timestamp("us", tz="UTC")).

bfill

  bfill 
 ( 
 * 
 , 
 limit 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Fill NA/NaN values by using the next valid observation to fill the gap.

Returns
Type
Description
Series/DataFrame or None
Object with missing values filled.

combine

  combine 
 ( 
 other 
 : 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 func 
 : 
 typing 
 . 
 Callable 
 [ 
 [ 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 fill_value 
 = 
 None 
 , 
 overwrite 
 : 
 bool 
 = 
 True 
 , 
 * 
 , 
 how 
 : 
 str 
 = 
 "outer" 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Perform column-wise combine with another DataFrame.

Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.

Parameters
Name
Description
other
DataFrame

The DataFrame to merge column-wise.

func
function

Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns.

fill_value
scalar value, default None

The value to fill NaNs with prior to passing any column to the merge func.

overwrite
bool, default True

If True, columns in self that do not exist in other will be overwritten with NaNs.

Returns
Type
Description
DataFrame
Combination of the provided DataFrames.

combine_first

  combine_first 
 ( 
 other 
 : 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 ) 
 

Update null elements with value in the same location in other .

Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. The resulting dataframe contains the 'first' dataframe values and overrides the second one values where both first.loc[index, col] and second.loc[index, col] are not missing values, upon calling first.combine_first(second).

Parameter
Name
Description
other
DataFrame

Provided DataFrame to use to fill null values.

Returns
Type
Description
DataFrame
The result of combining the provided DataFrame with the other object.

copy

  copy 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Make a copy of this object's indices and data.

A new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object.

count

  count 
 ( 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Count non-NA cells for each column or row.

The values None , NaN , NaT , and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na ) are considered NA.

Parameter
Name
Description
numeric_only
bool, default False

Include only float , int or boolean data.

Returns
Type
Description
For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame .

cummax

  cummax 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return cumulative maximum over a DataFrame axis.

Returns a DataFrame of the same size containing the cumulative maximum.

Returns
Type
Description
bigframes.dataframe.DataFrame
Return cumulative maximum of DataFrame.

cummin

  cummin 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return cumulative minimum over a DataFrame axis.

Returns a DataFrame of the same size containing the cumulative minimum.

Returns
Type
Description
bigframes.dataframe.DataFrame
Return cumulative minimum of DataFrame.

cumprod

  cumprod 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return cumulative product over a DataFrame axis.

Returns a DataFrame of the same size containing the cumulative product.

Returns
Type
Description
bigframes.dataframe.DataFrame
Return cumulative product of DataFrame.

cumsum

  cumsum 
 () 
 

Return cumulative sum over a DataFrame axis.

Returns a DataFrame of the same size containing the cumulative sum.

Returns
Type
Description
bigframes.dataframe.DataFrame
Return cumulative sum of DataFrame.

describe

  describe 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Generate descriptive statistics.

Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values.

Only supports numeric columns.

Returns
Type
Description
bigframes.dataframe.DataFrame
Summary statistics of the Series or Dataframe provided.

diff

  diff 
 ( 
 periods 
 : 
 int 
 = 
 1 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

First discrete difference of element.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row).

Parameter
Name
Description
periods
int, default 1

Periods to shift for calculating difference, accepts negative values.

Returns
Type
Description
bigframes.dataframe.DataFrame
First differences of the Series.

div

  div 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get floating division of DataFrame and other, element-wise (binary operator / ).

Equivalent to dataframe / other . With reverse version, rtruediv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

divide

  divide 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get floating division of DataFrame and other, element-wise (binary operator / ).

Equivalent to dataframe / other . With reverse version, rtruediv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

drop

  drop 
 ( 
 labels 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 * 
 , 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 int 
 , 
 str 
 ] 
 = 
 0 
 , 
 index 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Any 
 ] 
 = 
 None 
 , 
 columns 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 level 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ]] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Drop specified labels from columns.

Remove columns by directly specifying column names.

Exceptions
Type
Description
KeyError
If any of the labels is not found in the selected axis.
Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame without the removed column labels.

drop_duplicates

  drop_duplicates 
 ( 
 subset 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 * 
 , 
 keep 
 : 
 str 
 = 
 "first" 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return DataFrame with duplicate rows removed.

Considering certain columns is optional. Indexes, including time indexes are ignored.

Parameters
Name
Description
subset
column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the columns.

keep
{'first', 'last', False }, default 'first'

Determines which duplicates (if any) to keep. - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - False : Drop all duplicates.

Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame with duplicates removed

droplevel

  droplevel 
 ( 
 level 
 : 
 LevelsType 
 , 
 axis 
 : 
 int 
 | 
 str 
 = 
 0 
 ) 
 

Return DataFrame with requested index / column level(s) removed.

Parameters
Name
Description
level
int, str, or list-like

If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels.

axis
{0 or 'index', 1 or 'columns'}, default 0

Axis along which the level(s) is removed: * 0 or 'index': remove level(s) in column. * 1 or 'columns': remove level(s) in row.

Returns
Type
Description
DataFrame
DataFrame with requested index / column level(s) removed.

dropna

  dropna 
 ( 
 * 
 , 
 axis 
 : 
 int 
 | 
 str 
 = 
 0 
 , 
 inplace 
 : 
 bool 
 = 
 False 
 , 
 how 
 : 
 str 
 = 
 "any" 
 , 
 ignore_index 
 = 
 False 
 ) 
 - 
> DataFrame 
 

Remove missing values.

Parameters
Name
Description
axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value.

how
{'any', 'all'}, default 'any'

Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column.

ignore_index
bool, default False

If True , the resulting axis will be labeled 0, 1, …, n - 1.

Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame with NA entries dropped from it.

duplicated

  duplicated 
 ( 
 subset 
 = 
 None 
 , 
 keep 
 : 
 str 
 = 
 "first" 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return boolean Series denoting duplicate rows.

Considering certain columns is optional.

Parameters
Name
Description
subset
column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the columns.

keep
{'first', 'last', False}, default 'first'

Determines which duplicates (if any) to mark. - first : Mark duplicates as True except for the first occurrence. - last : Mark duplicates as True except for the last occurrence. - False : Mark all duplicates as True .

Returns
Type
Description
Boolean series for each duplicated rows.

eq

  eq 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get equal to of DataFrame and other, element-wise (binary operator eq ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

expanding

  expanding 
 ( 
 min_periods 
 : 
 int 
 = 
 1 
 ) 
 - 
> bigframes 
 . 
 core 
 . 
 window 
 . 
 Window 
 

Provide expanding window calculations.

Parameter
Name
Description
min_periods
int, default 1

Minimum number of observations in window required to have a value; otherwise, result is np.nan .

Returns
Type
Description
Expanding subclass.

ffill

  ffill 
 ( 
 * 
 , 
 limit 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Fill NA/NaN values by propagating the last valid observation to next valid.

Returns
Type
Description
Series/DataFrame or None
Object with missing values filled.

fillna

  fillna 
 ( 
 value 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Fill NA/NaN values using the specified method.

Parameter
Name
Description
value
scalar, Series

Value to use to fill holes (e.g. 0), alternately a Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the Series will not be filled. This value cannot be a list.

Returns
Type
Description
DataFrame
Object with missing values filled

filter

  filter 
 ( 
 items 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Iterable 
 ] 
 = 
 None 
 , 
 like 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 regex 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 axis 
 : 
 int 
 | 
 str 
 | 
 None 
 = 
 None 
 , 
 ) 
 - 
> DataFrame 
 

Subset the dataframe rows or columns according to the specified index labels.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters
Name
Description
items
list-like

Keep labels from axis which are in items.

like
str

Keep labels from axis for which "like in label == True".

regex
str (regular expression)

Keep labels from axis for which re.search(regex, label) == True.

axis
{0 or 'index', 1 or 'columns', None}, default None

The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'columns' for DataFrame. For Series this parameter is unused and defaults to None .

first_valid_index

  first_valid_index 
 () 
 

API documentation for first_valid_index method.

floordiv

  floordiv 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get integer division of DataFrame and other, element-wise (binary operator // ).

Equivalent to dataframe // other . With reverse version, rfloordiv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

ge

  ge 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >= ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

Returns
Type
Description
DataFrame
DataFrame of bool. The result of the comparison.

get

  get 
 ( 
 key 
 , 
 default 
 = 
 None 
 ) 
 

Get item from object for given key (ex: DataFrame column).

Returns default value if not found.

groupby

  groupby 
 ( 
 by 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ]], 
 ] 
 ] 
 = 
 None 
 , 
 * 
 , 
 level 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ]]] 
 ] 
 = 
 None 
 , 
 as_index 
 : 
 bool 
 = 
 True 
 , 
 dropna 
 : 
 bool 
 = 
 True 
 ) 
 - 
> bigframes 
 . 
 core 
 . 
 groupby 
 . 
 DataFrameGroupBy 
 

Group DataFrame by columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Parameters
Name
Description
by
str, Sequence[str]

A label or list of labels may be passed to group by the columns in self . Notice that a tuple is interpreted as a (single) key.

level
int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both by and level .

as_index
bool, default True

Default True. Return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. This argument has no effect on filtrations such as head() , tail() , nth() and in transformations.

dropna
bool, default True

Default True. If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups.

Returns
Type
Description
A groupby object that contains information about the groups.

gt

  gt 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get 'greater than' of DataFrame and other, element-wise (binary operator > ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

Returns
Type
Description
DataFrame
DataFrame of bool: The result of the comparison.

head

  head 
 ( 
 n 
 : 
 int 
 = 
 5 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return the first n rows.

This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it.

Not yet supportedFor negative values of n , this function returns all rows except the last |n| rows, equivalent to df[:n] .

If n is larger than the number of rows, this function returns all rows.

Parameter
Name
Description
n
int, default 5

Default 5. Number of rows to select.

idxmax

  idxmax 
 () 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return index of first occurrence of maximum over requested axis.

NA/null values are excluded.

Returns
Type
Description
Series
Indexes of maxima along the specified axis.

idxmin

  idxmin 
 () 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return index of first occurrence of minimum over requested axis.

NA/null values are excluded.

Returns
Type
Description
Series
Indexes of minima along the specified axis.

isin

  isin 
 ( 
 values 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Whether each element in the DataFrame is contained in values.

Parameter
Name
Description
values
iterable, or dict

The result will only be true at a location if all the labels match. If values is a dict, the keys must be the column names, which must match.

Returns
Type
Description
DataFrame
DataFrame of booleans showing whether each element in the DataFrame is contained in values.

isna

  isna 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values.

isnull

  isnull 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values.

items

  items 
 () 
 

Iterate over (column name, Series) pairs.

Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.

Returns
Type
Description
Iterator
Iterator of label, Series for each column.

join

  join 
 ( 
 other 
 : 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 * 
 , 
 on 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 how 
 : 
 str 
 = 
 "left" 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Join columns of another DataFrame.

Join columns with other DataFrame on index

Parameter
Name
Description
how
{'left', 'right', 'outer', 'inner'}, default 'left'`

How to handle the operation of the two objects. left : use calling frame's index (or column if on is specified) right : use other 's index. outer : form union of calling frame's index (or column if on is specified) with other 's index, and sort it lexicographically. inner : form intersection of calling frame's index (or column if on is specified) with other 's index, preserving the order of the calling's one.

Returns
Type
Description
bigframes.dataframe.DataFrame
A dataframe containing columns from both the caller and other .

kurt

  kurt 
 ( 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameter
Name
Description
numeric_only
bool, default False

Include only float, int, boolean columns.

kurtosis

  kurtosis 
 ( 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameter
Name
Description
numeric_only
bool, default False

Include only float, int, boolean columns.

le

  le 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get 'less than or equal to' of dataframe and other, element-wise (binary operator <= ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

Returns
Type
Description
DataFrame
DataFrame of bool. The result of the comparison.

lt

  lt 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get 'less than' of DataFrame and other, element-wise (binary operator < ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

Returns
Type
Description
DataFrame
DataFrame of bool. The result of the comparison.

map

  map 
 ( 
 func 
 , 
 na_action 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Apply a function to a Dataframe elementwise.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameter
Name
Description
na_action
Optional[str], default None

{None, 'ignore'} , default None. If ‘ignore’, propagate NaN values, without passing them to func.

Returns
Type
Description
bigframes.dataframe.DataFrame
Transformed DataFrame.

max

  max 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the maximum of the values over the requested axis.

If you want the index of the maximum, use idxmax . This is the equivalent of the numpy.ndarray method argmax .

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series after the maximum of values.

mean

  mean 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the mean of the values over the requested axis.

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series with the mean of values.

median

  median 
 ( 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 , 
 exact 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the median of the values over the requested axis.

Parameters
Name
Description
numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

exact
bool. default False

Default False. Get the exact median instead of an approximate one. Note: exact=True not yet supported.

Returns
Type
Description
Series with the median of values.

merge

  merge 
 ( 
 right 
 : 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 how 
 : 
 typing 
 . 
 Literal 
 [ 
 "inner" 
 , 
 "left" 
 , 
 "outer" 
 , 
 "right" 
 ] 
 = 
 "inner" 
 , 
 on 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 * 
 , 
 left_on 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 right_on 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 sort 
 : 
 bool 
 = 
 False 
 , 
 suffixes 
 : 
 tuple 
 [ 
 str 
 , 
 str 
 ] 
 = 
 ( 
 "_x" 
 , 
 "_y" 
 ) 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Merge DataFrame objects with a database-style join.

The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored . Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.

Parameters
Name
Description
on
label or list of labels

Columns to join on. It must be found in both DataFrames. Either on or left_on + right_on must be passed in.

left_on
label or list of labels

Columns to join on in the left DataFrame. Either on or left_on + right_on must be passed in.

right_on
label or list of labels

Columns to join on in the right DataFrame. Either on or left_on + right_on must be passed in.

Returns
Type
Description
bigframes.dataframe.DataFrame
A DataFrame of the two merged objects.

min

  min 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the minimum of the values over the requested axis.

If you want the index of the minimum, use idxmin . This is the equivalent of the numpy.ndarray method argmin .

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool, default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series with the minimum of the values.

mod

  mod 
 ( 
 other 
 : 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get modulo of DataFrame and other, element-wise (binary operator % ).

Equivalent to dataframe % other . With reverse version, rmod .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameter
Name
Description
axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

mul

  mul 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get multiplication of DataFrame and other, element-wise (binary operator * ).

Equivalent to dataframe * other . With reverse version, rmul .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

multiply

  multiply 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get multiplication of DataFrame and other, element-wise (binary operator * ).

Equivalent to dataframe * other . With reverse version, rmul .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

ne

  ne 
 ( 
 other 
 : 
 typing 
 . 
 Any 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get not equal to of DataFrame and other, element-wise (binary operator ne ).

Among flexible wrappers ( eq , ne , le , lt , ge , gt ) to comparison operators.

Equivalent to == , != , <= , < , >= , > with support to choose axis (rows or columns) and level for comparison.

Parameters
Name
Description
other
scalar, sequence, Series, or DataFrame

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}, default 'columns'

Whether to compare by the index (0 or 'index') or columns (1 or 'columns').

Returns
Type
Description
DataFrame
Result of the comparison.

nlargest

  nlargest 
 ( 
 n 
 : 
 int 
 , 
 columns 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]], 
 keep 
 : 
 str 
 = 
 "first" 
 , 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return the first n rows ordered by columns in descending order.

Return the first n rows with the largest values in columns , in descending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n) , but more performant.

Parameters
Name
Description
n
int

Number of rows to return.

columns
label or list of labels

Column label(s) to order by.

keep
{'first', 'last', 'all'}, default 'first'

Where there are duplicate values: - first : prioritize the first occurrence(s) - last : prioritize the last occurrence(s) - all : do not drop any duplicates, even it means selecting more than n items.

Returns
Type
Description
DataFrame .. note:: This function cannot be used with all column types. For example, when specifying columns with object or category dtypes, TypeError is raised.
The first n rows ordered by the given columns in descending order.

notna

  notna 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values get mapped to False values.

Returns
Type
Description
NDFrame
Mask of bool values for each element that indicates whether an element is not an NA value.

notnull

  notnull 
 () 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values get mapped to False values.

Returns
Type
Description
NDFrame
Mask of bool values for each element that indicates whether an element is not an NA value.

nsmallest

  nsmallest 
 ( 
 n 
 : 
 int 
 , 
 columns 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]], 
 keep 
 : 
 str 
 = 
 "first" 
 , 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return the first n rows ordered by columns in ascending order.

Return the first n rows with the smallest values in columns , in ascending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=True).head(n) , but more performant.

Parameters
Name
Description
n
int

Number of rows to return.

columns
label or list of labels

Column label(s) to order by.

keep
{'first', 'last', 'all'}, default 'first'

Where there are duplicate values: - first : prioritize the first occurrence(s) - last : prioritize the last occurrence(s) - all : do not drop any duplicates, even it means selecting more than n items.

Returns
Type
Description
DataFrame .. note:: This function cannot be used with all column types. For example, when specifying columns with object or category dtypes, TypeError is raised.
The first n rows ordered by the given columns in ascending order.

nunique

  nunique 
 () 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Count number of distinct elements in specified axis.

Returns
Type
Description
Series with number of distinct elements.

pct_change

  pct_change 
 ( 
 periods 
 : 
 int 
 = 
 1 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Fractional change between the current and a prior element.

Computes the fractional change from the immediately previous row by default. This is useful in comparing the fraction of change in a time series of elements.

Parameter
Name
Description
periods
int, default 1

Periods to shift for forming percent change.

Returns
Type
Description
Series or DataFrame
The same type as the calling object.

pivot

  pivot 
 ( 
 * 
 , 
 columns 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]], 
 index 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 values 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns.

Parameters
Name
Description
columns
str or object or a list of str

Column to use to make new frame's columns.

index
str or object or a list of str, optional

Column to use to make new frame's index. If not given, uses existing index.

values
str, object or a list of the previous, optional

Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.

pow

  pow 
 ( 
 other 
 : 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get Exponential power of dataframe and other, element-wise (binary operator pow ).

Equivalent to dataframe ** other , but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

prod

  prod 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the product of the values over the requested axis.

Parameters
Name
Description
aßxis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Include only float, int, boolean columns.

Returns
Type
Description
Series with the product of the values.

product

  product 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the product of the values over the requested axis.

Parameters
Name
Description
aßxis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Include only float, int, boolean columns.

Returns
Type
Description
Series with the product of the values.

radd

  radd 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get addition of DataFrame and other, element-wise (binary operator + ).

Equivalent to dataframe + other . With reverse version, radd .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rank

  rank 
 ( 
 axis 
 = 
 0 
 , 
 method 
 : 
 str 
 = 
 "average" 
 , 
 numeric_only 
 = 
 False 
 , 
 na_option 
 : 
 str 
 = 
 "keep" 
 , 
 ascending 
 = 
 True 
 , 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Compute numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

Parameters
Name
Description
method
{'average', 'min', 'max', 'first', 'dense'}, default 'average'

How to rank the group of records that have the same value (i.e. ties): average : average rank of the group, min : lowest rank in the group max : highest rank in the group, first : ranks assigned in order they appear in the array, dense`: like 'min', but rank always increases by 1 between groups.

numeric_only
bool, default False

For DataFrame objects, rank only numeric columns if set to True.

na_option
{'keep', 'top', 'bottom'}, default 'keep'

How to rank NaN values: keep : assign NaN rank to NaN values, , top : assign lowest rank to NaN values, bottom : assign highest rank to NaN values.

ascending
bool, default True

Whether or not the elements should be ranked in ascending order.

Returns
Type
Description
same type as caller
Return a Series or DataFrame with data ranks as values.

rdiv

  rdiv 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get floating division of DataFrame and other, element-wise (binary operator / ).

Equivalent to other / dataframe . With reverse version, truediv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

reindex

  reindex 
 ( 
 labels 
 = 
 None 
 , 
 * 
 , 
 index 
 = 
 None 
 , 
 columns 
 = 
 None 
 , 
 axis 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ]] 
 = 
 None 
 , 
 validate 
 : 
 typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 = 
 None 
 ) 
 

Conform DataFrame to new index with optional filling logic.

Places NA in locations having no value in the previous index. A new object is produced.

Parameters
Name
Description
labels
array-like, optional

New labels / index to conform the axis specified by 'axis' to.

index
array-like, optional

New labels for the index. Preferably an Index object to avoid duplicating data.

columns
array-like, optional

New labels for the columns. Preferably an Index object to avoid duplicating data.

axis
int or str, optional

Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).

Returns
Type
Description
DataFrame
DataFrame with changed index.

reindex_like

  reindex_like 
 ( 
 other 
 : 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 * 
 , 
 validate 
 : 
 typing 
 . 
 Optional 
 [ 
 bool 
 ] 
 = 
 None 
 ) 
 

Return an object with matching indices as other object.

Conform the object to the same index on all axes. Optional filling logic, placing Null in locations having no value in the previous index.

Parameter
Name
Description
other
Object of the same data type

Its row and column indices are used to define the new indices of this object.

Returns
Type
Description
Series or DataFrame
Same type as caller, but with changed indices on each axis.

rename

  rename 
 ( 
 * 
 , 
 columns 
 : 
 typing 
 . 
 Mapping 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Hashable 
 ] 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Rename columns.

Dict values must be unique (1-to-1). Labels not contained in a dict will be left as-is. Extra labels listed don't throw an error.

Parameter
Name
Description
columns
Mapping

Dict-like from old column labels to new column labels.

Exceptions
Type
Description
KeyError
If any of the labels is not found.
Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame with the renamed axis labels.

rename_axis

  rename_axis 
 ( 
 mapper 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]], 
 ** 
 kwargs 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Set the name of the axis for the index.

Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame with the new index name

reorder_levels

  reorder_levels 
 ( 
 order 
 : 
 LevelsType 
 , 
 axis 
 : 
 int 
 | 
 str 
 = 
 0 
 ) 
 

Rearrange index levels using input order. May not drop or duplicate levels.

Parameters
Name
Description
order
list of int or list of str

List representing new level order. Reference level by number (position) or by key (label).

axis
{0 or 'index', 1 or 'columns'}, default 0

Where to reorder levels.

Returns
Type
Description
DataFrame
DataFrame of rearranged index.

reset_index

  reset_index 
 ( 
 * 
 , 
 drop 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Reset the index.

Reset the index of the DataFrame, and use the default one instead.

Parameter
Name
Description
drop
bool, default False

Do not try to insert index into dataframe columns. This resets the index to the default integer index.

Returns
Type
Description
bigframes.dataframe.DataFrame
DataFrame with the new index.

rfloordiv

  rfloordiv 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get integer division of DataFrame and other, element-wise (binary operator // ).

Equivalent to other // dataframe . With reverse version, rfloordiv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rmod

  rmod 
 ( 
 other 
 : 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get modulo of DataFrame and other, element-wise (binary operator % ).

Equivalent to other % dataframe . With reverse version, mod .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rmul

  rmul 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get multiplication of DataFrame and other, element-wise (binary operator * ).

Equivalent to dataframe * other . With reverse version, rmul .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rolling

  rolling 
 ( 
 window 
 : 
 int 
 , 
 min_periods 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 core 
 . 
 window 
 . 
 Window 
 

Provide rolling window calculations.

Parameters
Name
Description
window
int, timedelta, str, offset, or BaseIndexer subclass

Size of the moving window. If an integer, the fixed number of observations used for each window. If a timedelta, str, or offset, the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetime-like indexes. To learn more about the offsets & frequency strings, please see this link https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases __. If a BaseIndexer subclass, the window boundaries based on the defined get_window_bounds method. Additional rolling keyword arguments, namely min_periods , center , closed and step will be passed to get_window_bounds .

min_periods
int, default None

Minimum number of observations in window required to have a value; otherwise, result is np.nan . For a window that is specified by an offset, min_periods will default to 1. For a window that is specified by an integer, min_periods will default to the size of the window.

Returns
Type
Description
Window subclass if a win_type is passed. Rolling subclass if win_type is not passed.

rpow

  rpow 
 ( 
 other 
 : 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 ) 
 - 
> DataFrame 
 

Get Exponential power of dataframe and other, element-wise (binary operator rpow ).

Equivalent to other ** dataframe , but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rsub

  rsub 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get subtraction of DataFrame and other, element-wise (binary operator - ).

Equivalent to other - dataframe . With reverse version, sub .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

rtruediv

  rtruediv 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get floating division of DataFrame and other, element-wise (binary operator / ).

Equivalent to other / dataframe . With reverse version, truediv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

sample

  sample 
 ( 
 n 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 frac 
 : 
 typing 
 . 
 Optional 
 [ 
 float 
 ] 
 = 
 None 
 , 
 * 
 , 
 random_state 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Parameters
Name
Description
n
Optional[int], default None

Number of items from axis to return. Cannot be used with frac . Default = 1 if frac = None.

frac
Optional[float], default None

Fraction of axis items to return. Cannot be used with n .

random_state
Optional[int], default None

Seed for random number generator.

set_index

  set_index 
 ( 
 keys 
 : 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]], 
 append 
 : 
 bool 
 = 
 False 
 , 
 drop 
 : 
 bool 
 = 
 True 
 , 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Set the DataFrame index using existing columns.

Set the DataFrame index (row labels) using one existing column. The index can replace the existing index.

Returns
Type
Description
DataFrame
Changed row labels.

shift

  shift 
 ( 
 periods 
 : 
 int 
 = 
 1 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Shift index by desired number of periods.

Shifts the index without realigning the data.

Returns
Type
Description
NDFrame
Copy of input object, shifted.

skew

  skew 
 ( 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 

Return unbiased skew over requested axis.

Normalized by N-1.

Parameter
Name
Description
numeric_only
bool, default False

Include only float, int, boolean columns.

sort_index

  sort_index 
 ( 
 ascending 
 : 
 bool 
 = 
 True 
 , 
 na_position 
 : 
 typing 
 . 
 Literal 
 [ 
 "first" 
 , 
 "last" 
 ] 
 = 
 "last" 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Sort object by labels (along an axis).

sort_values

  sort_values 
 ( 
 by 
 : 
 str 
 | 
 typing 
 . 
 Sequence 
 [ 
 str 
 ], 
 * 
 , 
 ascending 
 : 
 bool 
 | 
 typing 
 . 
 Sequence 
 [ 
 bool 
 ] 
 = 
 True 
 , 
 kind 
 : 
 str 
 = 
 "quicksort" 
 , 
 na_position 
 : 
 typing 
 . 
 Literal 
 [ 
 "first" 
 , 
 "last" 
 ] 
 = 
 "last" 
 ) 
 - 
> DataFrame 
 

Sort by the values along row axis.

Parameters
Name
Description
by
str or Sequence[str]

Name or list of names to sort by.

ascending
bool or Sequence[bool], default True

Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.

kind
str, default quicksort

Choice of sorting algorithm. Accepts 'quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’. Ignored except when determining whether to sort stably. 'mergesort' or 'stable' will result in stable reorder.

na_position
{'first', 'last'}, default last

{'first', 'last'} , default 'last' Puts NaNs at the beginning if first ; last puts NaNs at the end.

stack

  stack 
 () 
 

Stack the prescribed level(s) from columns to index.

Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:

  • if the columns have a single level, the output is a Series;
  • if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.
Returns
Type
Description
DataFrame or Series
Stacked dataframe or series.

std

  std 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return sample standard deviation over requested axis.

Normalized by N-1 by default.

Parameter
Name
Description
numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series with sample standard deviation.

sub

  sub 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get subtraction of DataFrame and other, element-wise (binary operator - ).

Equivalent to dataframe - other . With reverse version, rsub .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

subtract

  subtract 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get subtraction of DataFrame and other, element-wise (binary operator - ).

Equivalent to dataframe - other . With reverse version, rsub .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

sum

  sum 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return the sum of the values over the requested axis.

This is equivalent to the method numpy.sum .

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series with the sum of values.

swaplevel

  swaplevel 
 ( 
 i 
 : 
 int 
 = 
 - 
 2 
 , 
 j 
 : 
 int 
 = 
 - 
 1 
 , 
 axis 
 : 
 int 
 | 
 str 
 = 
 0 
 ) 
 

Swap levels i and j in a MultiIndex .

Default is to swap the two innermost levels of the index.

Parameters
Name
Description
i
j: int or str

j: Levels of the indices to be swapped. Can pass level name as string.

axis
{0 or 'index', 1 or 'columns'}, default 0

The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.

Returns
Type
Description
DataFrame
DataFrame with levels swapped in MultiIndex.

tail

  tail 
 ( 
 n 
 : 
 int 
 = 
 5 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows.

For negative values of n , this function returns all rows except the first |n| rows, equivalent to df[|n|:] .

If n is larger than the number of rows, this function returns all rows.

Parameter
Name
Description
n
int, default 5

Number of rows to select.

to_csv

  to_csv 
 ( 
 path_or_buf 
 : 
 str 
 , 
 sep 
 = 
 "," 
 , 
 * 
 , 
 header 
 : 
 bool 
 = 
 True 
 , 
 index 
 : 
 bool 
 = 
 True 
 ) 
 - 
> None 
 

Write object to a comma-separated values (csv) file on Cloud Storage.

Parameters
Name
Description
path_or_buf
str

A destination URI of Cloud Storage files(s) to store the extracted dataframe in format of gs://<bucket_name>/<object_name_or_glob> . If the data size is more than 1GB, you must use a wildcard to export the data into multiple files and the size of the files varies. None, file-like objects or local file paths not yet supported.

index
bool, default True

If True, write row names (index).

Returns
Type
Description
None
String output not yet supported.

to_dict

  to_dict 
 ( 
 orient 
 : 
 Literal 
 [ 
 'dict' 
 , 
 'list' 
 , 
 'series' 
 , 
 'split' 
 , 
 'tight' 
 , 
 'records' 
 , 
 'index' 
 ] 
 = 
 'dict' 
 , 
 into 
 : 
 type 
 [ 
 dict 
 ] 
 = 
< class 
  
 ' 
 dict 
 '>, **kwargs) -> dict | list[dict] 
 

Convert the DataFrame to a dictionary.

The type of the key-value pairs can be customized with the parameters (see below).

Parameters
Name
Description
orient
str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}

Determines the type of the values of the dictionary. 'dict' (default) : dict like {column -> {index -> value}}. 'list' : dict like {column -> [values]}. 'series' : dict like {column -> Series(values)}. split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]}. 'tight' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values], 'index_names' -> [index.names], 'column_names' -> [column.names]}. 'records' : list like [{column -> value}, ... , {column -> value}]. 'index' : dict like {index -> {column -> value}}.

into
class, default dict

The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.

index
bool, default True

Whether to include the index item (and index_names item if orient is 'tight') in the returned dictionary. Can only be False when orient is 'split' or 'tight'.

Returns
Type
Description
dict or list of dict
Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter.

to_excel

  to_excel 
 ( 
 excel_writer 
 , 
 sheet_name 
 : 
 str 
 = 
 "Sheet1" 
 , 
 ** 
 kwargs 
 ) 
 - 
> None 
 

Write DataFrame to an Excel sheet.

To write a single DataFrame to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.

Multiple sheets may be written to by specifying unique sheet_name . With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.

Parameters
Name
Description
excel_writer
path-like, file-like, or ExcelWriter object

File path or existing ExcelWriter.

sheet_name
str, default 'Sheet1'

Name of sheet which will contain DataFrame.

to_gbq

  to_gbq 
 ( 
 destination_table 
 : 
 str 
 , 
 * 
 , 
 if_exists 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Literal 
 [ 
 "fail" 
 , 
 "replace" 
 , 
 "append" 
 ]] 
 = 
 "fail" 
 , 
 index 
 : 
 bool 
 = 
 True 
 , 
 ordering_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> None 
 

Write a DataFrame to a BigQuery table.

Parameters
Name
Description
destination_table
str

Name of table to be written, in the form dataset.tablename or project.dataset.tablename .

if_exists
str, default 'fail'

Behavior when the destination table exists. Value can be one of: 'fail' If table exists raise pandas_gbq.gbq.TableCreationError. 'replace' If table exists, drop it, recreate it, and insert data. 'append' If table exists, insert data. Create if does not exist.

index
bool. default True

whether write row names (index) or not.

ordering_id
Optional[str], default None

If set, write the ordering of the DataFrame as a column in the result table with this name.

to_json

  to_json 
 ( 
 path_or_buf 
 : 
 str 
 , 
 orient 
 : 
 typing 
 . 
 Literal 
 [ 
 "split" 
 , 
 "records" 
 , 
 "index" 
 , 
 "columns" 
 , 
 "values" 
 , 
 "table" 
 ] 
 = 
 "columns" 
 , 
 * 
 , 
 lines 
 : 
 bool 
 = 
 False 
 , 
 index 
 : 
 bool 
 = 
 True 
 ) 
 - 
> None 
 

Convert the object to a JSON string, written to Cloud Storage.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
Name
Description
path_or_buf
str

A destination URI of Cloud Storage files(s) to store the extracted dataframe in format of gs://<bucket_name>/<object_name_or_glob> . Must contain a wildcard * character. If the data size is more than 1GB, you must use a wildcard to export the data into multiple files and the size of the files varies. None, file-like objects or local file paths not yet supported.

orient
{ split , records , index , columns , values , table }, default 'columns

Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {{'split', 'records', 'index', 'table'}}. * DataFrame: - default is 'columns' - allowed values are: {{'split', 'records', 'index', 'columns', 'values', 'table'}}. * The format of the JSON string: - 'split' : dict like {{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}} - 'records' : list like [{{column -> value}}, ... , {{column -> value}}] - 'index' : dict like {{index -> {{column -> value}}}} - 'columns' : dict like {{column -> {{index -> value}}}} - 'values' : just the values array - 'table' : dict like {{'schema': {{schema}}, 'data': {{data}}}} Describing the data, where data component is like orient='records' .

index
bool, default True

If True, write row names (index).

lines
bool, default False

If 'orient' is 'records' write out line-delimited json format. Will throw ValueError if incorrect 'orient' since others are not list-like.

Returns
Type
Description
None
String output not yet supported.

to_latex

  to_latex 
 ( 
 buf 
 = 
 None 
 , 
 columns 
 : 
 Sequence 
 | 
 None 
 = 
 None 
 , 
 header 
 : 
 bool 
 | 
 Sequence 
 [ 
 str 
 ] 
 = 
 True 
 , 
 index 
 : 
 bool 
 = 
 True 
 , 
 ** 
 kwargs 
 ) 
 - 
> str 
 | 
 None 
 

Render object to a LaTeX tabular, longtable, or nested table.

Requires \usepackage{{booktabs}} . The output can be copy/pasted into a main LaTeX document or read from an external file with \input{{table.tex}} .

Parameters
Name
Description
buf
str, Path or StringIO-like, optional, default None

Buffer to write to. If None, the output is returned as a string.

columns
list of label, optional

The subset of columns to write. Writes all columns by default.

header
bool or list of str, default True

Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.

index
bool, default True

Write row names (index).

to_markdown

  to_markdown 
 ( 
 buf 
 = 
 None 
 , 
 mode 
 : 
 str 
 = 
 "wt" 
 , 
 index 
 : 
 bool 
 = 
 True 
 , 
 ** 
 kwargs 
 ) 
 - 
> str 
 | 
 None 
 

Print DataFrame in Markdown-friendly format.

Parameters
Name
Description
buf
str, Path or StringIO-like, optional, default None

Buffer to write to. If None, the output is returned as a string.

mode
str, optional

Mode in which file is opened.

index
bool, optional, default True

Add index (row) labels.

to_numpy

  to_numpy 
 ( 
 dtype 
 = 
 None 
 , 
 copy 
 = 
 False 
 , 
 na_value 
 = 
 None 
 , 
 ** 
 kwargs 
 ) 
 - 
> numpy 
 . 
 ndarray 
 

Convert the DataFrame to a NumPy array.

Parameters
Name
Description
dtype
None

The dtype to pass to numpy.asarray() .

copy
bool, default None

Whether to ensure that the returned value is not a view on another array.

na_value
Any, default None

The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.

Returns
Type
Description
numpy.ndarray
The converted NumPy array.

to_orc

  to_orc 
 ( 
 path 
 = 
 None 
 , 
 ** 
 kwargs 
 ) 
 - 
> bytes 
 | 
 None 
 

Write a DataFrame to the ORC format.

Parameter
Name
Description
path
str, file-like object or None, default None

If a string, it will be used as Root Directory path when writing a partitioned dataset. By file-like object, we refer to objects with a write() method, such as a file handle (e.g. via builtin open function). If path is None, a bytes object is returned.

to_pandas

  to_pandas 
 ( 
 max_download_size 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 sampling_method 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 , 
 random_state 
 : 
 typing 
 . 
 Optional 
 [ 
 int 
 ] 
 = 
 None 
 , 
 ) 
 - 
> pandas 
 . 
 core 
 . 
 frame 
 . 
 DataFrame 
 

Write DataFrame to pandas DataFrame.

Parameters
Name
Description
max_download_size
int, default None

Download size threshold in MB. If max_download_size is exceeded when downloading data (e.g., to_pandas()), the data will be downsampled if bigframes.options .sampling.enable_downsampling is True, otherwise, an error will be raised. If set to a value other than None, this will supersede the global config.

sampling_method
str, default None

Downsampling algorithms to be chosen from, the choices are: "head": This algorithm returns a portion of the data from the beginning. It is fast and requires minimal computations to perform the downsampling; "uniform": This algorithm returns uniform random samples of the data. If set to a value other than None, this will supersede the global config.

random_state
int, default None

The seed for the uniform downsampling algorithm. If provided, the uniform method may take longer to execute and require more computation. If set to a value other than None, this will supersede the global config.

Returns
Type
Description
pandas.DataFrame
A pandas DataFrame with all rows and columns of this DataFrame if the data_sampling_threshold_mb is not exceeded; otherwise, a pandas DataFrame with downsampled rows and all columns of this DataFrame.

to_parquet

  to_parquet 
 ( 
 path 
 : 
 str 
 , 
 * 
 , 
 index 
 : 
 bool 
 = 
 True 
 ) 
 - 
> None 
 

Write a DataFrame to the binary Parquet format.

This function writes the dataframe as a parquet file <https://parquet.apache.org/> _ to Cloud Storage.

Parameters
Name
Description
path
str

Destination URI(s) of Cloud Storage files(s) to store the extracted dataframe in format of gs://<bucket_name>/<object_name_or_glob> . If the data size is more than 1GB, you must use a wildcard to export the data into multiple files and the size of the files varies.

index
bool, default True

If True , include the dataframe's index(es) in the file output. If False , they will not be written to the file.

to_pickle

  to_pickle 
 ( 
 path 
 , 
 ** 
 kwargs 
 ) 
 - 
> None 
 

Pickle (serialize) object to file.

Parameter
Name
Description
path
str

File path where the pickled object will be stored.

to_records

  to_records 
 ( 
 index 
 : 
 bool 
 = 
 True 
 , 
 column_dtypes 
 = 
 None 
 , 
 index_dtypes 
 = 
 None 
 ) 
 - 
> numpy 
 . 
 recarray 
 

Convert DataFrame to a NumPy record array.

Index will be included as the first field of the record array if requested.

Parameters
Name
Description
index
bool, default True

Include index in resulting record array, stored in 'index' field or using the index label, if set.

column_dtypes
str, type, dict, default None

If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types.

index_dtypes
str, type, dict, default None

If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if index=True .

Returns
Type
Description
np.recarray
NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries.

to_string

  to_string 
 ( 
 buf 
 = 
 None 
 , 
 columns 
 : 
 Sequence 
 [ 
 str 
 ] 
 | 
 None 
 = 
 None 
 , 
 col_space 
 = 
 None 
 , 
 header 
 : 
 bool 
 | 
 Sequence 
 [ 
 str 
 ] 
 = 
 True 
 , 
 index 
 : 
 bool 
 = 
 True 
 , 
 na_rep 
 : 
 str 
 = 
 "NaN" 
 , 
 formatters 
 = 
 None 
 , 
 float_format 
 = 
 None 
 , 
 sparsify 
 : 
 bool 
 | 
 None 
 = 
 None 
 , 
 index_names 
 : 
 bool 
 = 
 True 
 , 
 justify 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 max_rows 
 : 
 int 
 | 
 None 
 = 
 None 
 , 
 max_cols 
 : 
 int 
 | 
 None 
 = 
 None 
 , 
 show_dimensions 
 : 
 bool 
 = 
 False 
 , 
 decimal 
 : 
 str 
 = 
 "." 
 , 
 line_width 
 : 
 int 
 | 
 None 
 = 
 None 
 , 
 min_rows 
 : 
 int 
 | 
 None 
 = 
 None 
 , 
 max_colwidth 
 : 
 int 
 | 
 None 
 = 
 None 
 , 
 encoding 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 ) 
 - 
> str 
 | 
 None 
 

Render a DataFrame to a console-friendly tabular output.

Parameters
Name
Description
buf
str, Path or StringIO-like, optional, default None

Buffer to write to. If None, the output is returned as a string.

columns
sequence, optional, default None

The subset of columns to write. Writes all columns by default.

col_space
int, list or dict of int, optional

The minimum width of each column.

header
bool or sequence, optional

Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.

index
bool, optional, default True

Whether to print index (row) labels.

na_rep
str, optional, default 'NaN'

String representation of NAN to use.

formatters
list, tuple or dict of one-param. functions, optional

Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.

float_format
one-parameter function, optional, default None

Formatter function to apply to columns' elements if they are floats. The result of this function must be a unicode string.

sparsify
bool, optional, default True

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.

index_names
bool, optional, default True

Prints the names of the indexes.

justify
str, default None

How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are, 'left', 'right', 'center', 'justify', 'justify-all', 'start', 'end', 'inherit', 'match-parent', 'initial', 'unset'.

max_rows
int, optional

Maximum number of rows to display in the console.

min_rows
int, optional

The number of rows to display in the console in a truncated repr (when number of rows is above max_rows ).

max_cols
int, optional

Maximum number of columns to display in the console.

show_dimensions
bool, default False

Display DataFrame dimensions (number of rows by number of columns).

decimal
str, default '.'

Character recognized as decimal separator, e.g. ',' in Europe.

line_width
int, optional

Width to wrap a line in characters.

max_colwidth
int, optional

Max width to truncate each column in characters. By default, no limit.

encoding
str, default "utf-8"

Set character encoding.

Returns
Type
Description
str or None
If buf is None, returns the result as a string. Otherwise returns None.

truediv

  truediv 
 ( 
 other 
 : 
 float 
 | 
 int 
 | 
 bigframes 
 . 
 series 
 . 
 Series 
 | 
 DataFrame 
 , 
 axis 
 : 
 str 
 | 
 int 
 = 
 "columns" 
 , 
 ) 
 - 
> DataFrame 
 

Get floating division of DataFrame and other, element-wise (binary operator / ).

Equivalent to dataframe / other . With reverse version, rtruediv .

Among flexible wrappers ( add , sub , mul , div , mod , pow ) to arithmetic operators: + , - , * , / , // , % , ** .

Parameters
Name
Description
other
float, int, or Series

Any single or multiple element data structure, or list-like object.

axis
{0 or 'index', 1 or 'columns'}

Whether to compare by the index (0 or 'index') or columns. (1 or 'columns'). For Series input, axis to match Series index on.

Returns
Type
Description
DataFrame
DataFrame result of the arithmetic operation.

unstack

  unstack 
 () 
 

Pivot a level of the (necessarily hierarchical) index labels.

Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.

If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex).

update

  update 
 ( 
 other 
 , 
 join 
 : 
 str 
 = 
 "left" 
 , 
 overwrite 
 = 
 True 
 , 
 filter_func 
 = 
 None 
 ) 
 

Modify in place using non-NA values from another DataFrame.

Aligns on indices. There is no return value.

Parameters
Name
Description
other
DataFrame, or object coercible into a DataFrame

Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame.

join
{'left'}, default 'left'

Only left join is implemented, keeping the index and columns of the original object.

overwrite
bool, default True

How to handle non-NA values for overlapping keys: True: overwrite original DataFrame's values with values from other . False: only update values that are NA in the original DataFrame.

filter_func
callable(1d-array) -> bool 1d-array, optional

Can choose to replace values other than NA. Return True for values that should be updated.

Returns
Type
Description
None
This method directly changes calling object.

value_counts

  value_counts 
 ( 
 subset 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 typing 
 . 
 Hashable 
 , 
 typing 
 . 
 Sequence 
 [ 
 typing 
 . 
 Hashable 
 ]] 
 ] 
 = 
 None 
 , 
 normalize 
 : 
 bool 
 = 
 False 
 , 
 sort 
 : 
 bool 
 = 
 True 
 , 
 ascending 
 : 
 bool 
 = 
 False 
 , 
 dropna 
 : 
 bool 
 = 
 True 
 , 
 ) 
 

Return a Series containing counts of unique rows in the DataFrame.

Parameters
Name
Description
subset
label or list of labels, optional

Columns to use when counting unique combinations.

normalize
bool, default False

Return proportions rather than frequencies.

sort
bool, default True

Sort by frequencies.

ascending
bool, default False

Sort in ascending order.

dropna
bool, default True

Don’t include counts of rows that contain NA values.

Returns
Type
Description
Series
Series containing counts of unique rows in the DataFrame

var

  var 
 ( 
 axis 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 int 
 ] 
 = 
 0 
 , 
 * 
 , 
 numeric_only 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Return unbiased variance over requested axis.

Normalized by N-1 by default.

Parameters
Name
Description
axis
{index (0), columns (1)}

Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.

numeric_only
bool. default False

Default False. Include only float, int, boolean columns.

Returns
Type
Description
Series with unbiased variance over requested axis.
Design a Mobile Site
View Site in Mobile | Classic
Share by: