- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
MultiIndex
(
data
=
None
,
dtype
=
None
,
*
,
name
=
None
,
session
=
None
)
A multi-level, or hierarchical, index object for pandas objects.
Methods
from_arrays
from_arrays
(
arrays
,
sortorder
:
typing
.
Optional
[
int
]
=
None
,
names
=
None
)
-
> bigframes
.
core
.
indexes
.
multi
.
MultiIndex
Convert arrays to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> bpd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
arrays
list / sequence of array-likes
Each array-like gives one level's value for each data point. len(arrays) is the number of levels.
sortorder
int or None
Level of sortedness (must be lexicographically sorted by that level).
names
list / sequence of str, optional
Names for the levels in the index.
from_tuples
from_tuples
(
tuples
:
typing
.
Iterable
[
tuple
[
typing
.
Hashable
,
...
]],
sortorder
:
typing
.
Optional
[
int
]
=
None
,
names
:
typing
.
Optional
[
typing
.
Union
[
typing
.
Sequence
[
typing
.
Hashable
],
typing
.
Hashable
]
]
=
None
,
)
-
> bigframes
.
core
.
indexes
.
multi
.
MultiIndex
Convert list of tuples to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> bpd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
tuples
list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder
int or None
Level of sortedness (must be lexicographically sorted by that level).
names
list / sequence of str, optional
Names for the levels in the index.