- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
SeriesGroupBy
(
block
:
bigframes
.
core
.
blocks
.
Block
,
value_column
:
str
,
by_col_ids
:
typing
.
Sequence
[
str
],
value_name
:
typing
.
Hashable
=
None
,
dropna
=
True
,
)
Class for grouping and aggregating relational data.
Methods
agg
agg
(
func
=
None
,
)
-
> typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
Aggregate using one or more operations.
aggregate
aggregate
(
func
=
None
,
)
-
> typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
API documentation for aggregate
method.
all
all
()
-
> bigframes
.
series
.
Series
Return True if all values in the group are true, else False.
Series or DataFrame
any
any
()
-
> bigframes
.
series
.
Series
Return True if any value in the group is true, else False.
Series or DataFrame
count
count
()
-
> bigframes
.
series
.
Series
Compute count of group, excluding missing values.
Series or DataFrame
cumcount
cumcount
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Number each item in each group from 0 to the length of that group - 1.
ascending
bool, default True
If False, number in reverse, from length of group - 1 to 0.
Series
cummax
cummax
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Cumulative max for each group.
Series or DataFrame
cummin
cummin
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Cumulative min for each group.
Series or DataFrame
cumprod
cumprod
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Cumulative product for each group.
Series or DataFrame
cumsum
cumsum
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Cumulative sum for each group.
Series or DataFrame
diff
diff
(
periods
=
1
)
-
> bigframes
.
series
.
Series
First discrete difference of element. Calculates the difference of each element compared with another element in the group (default is element in previous row).
Series or DataFrame
expanding
expanding
(
min_periods
:
int
=
1
)
-
> bigframes
.
core
.
window
.
Window
Provides expanding functionality.
Series or DataFrame
kurt
kurt
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
numeric_only
bool, default False
Include only float
, int
or boolean
data.
kurtosis
kurtosis
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
API documentation for kurtosis
method.
max
max
(
*
args
)
-
> bigframes
.
series
.
Series
Compute max of group values.
numeric_only
bool, default False
Include only float, int, boolean columns.
min_count
int, default 0
The required number of valid values to perform the operation. If fewer than min_count
and non-NA values are present, the result will be NA.
Series or DataFrame
mean
mean
(
*
args
)
-
> bigframes
.
series
.
Series
Compute mean of groups, excluding missing values.
numeric_only
bool, default False
Include only float, int, boolean columns.
pandas.Series or pandas.DataFrame
median
median
(
*
args
,
exact
:
bool
=
True
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Compute median of groups, excluding missing values.
numeric_only
bool, default False
Include only float, int, boolean columns.
exact
bool, default True
Calculate the exact median instead of an approximation.
pandas.Series or pandas.DataFrame
min
min
(
*
args
)
-
> bigframes
.
series
.
Series
Compute min of group values.
numeric_only
bool, default False
Include only float, int, boolean columns.
min_count
int, default 0
The required number of valid values to perform the operation. If fewer than min_count
and non-NA values are present, the result will be NA.
Series or DataFrame
nunique
nunique
()
-
> bigframes
.
series
.
Series
Return number of unique elements in the group.
Series
prod
prod
(
*
args
)
-
> bigframes
.
series
.
Series
Compute prod of group values.
numeric_only
bool, default False
Include only float, int, boolean columns.
min_count
int, default 0
The required number of valid values to perform the operation. If fewer than min_count
and non-NA values are present, the result will be NA.
Series or DataFrame
quantile
quantile
(
q
:
typing
.
Union
[
float
,
typing
.
Sequence
[
float
]]
=
0.5
,
*
,
numeric_only
:
bool
=
False
)
-
> bigframes
.
series
.
Series
Return group values at the given quantile, a la numpy.percentile.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame([
... ['a', 1], ['a', 2], ['a', 3],
... ['b', 1], ['b', 3], ['b', 5]
... ], columns=['key', 'val'])
>>> df.groupby('key').quantile()
val
key
a 2.0
b 3.0
<BLANKLINE>
[2 rows x 1 columns]
q
float or array-like, default 0.5 (50% quantile)
Value(s) between 0 and 1 providing the quantile(s) to compute.
numeric_only
bool, default False
Include only float
, int
or boolean
data.
Series or DataFrame
rolling
rolling
(
window
:
int
,
min_periods
=
None
)
-
> bigframes
.
core
.
window
.
Window
Returns a rolling grouper, providing rolling functionality per group.
min_periods
int, default None
Minimum number of observations in window required to have a value; otherwise, result is np.nan
. For a window that is specified by an offset, min_periods
will default to 1. For a window that is specified by an integer, min_periods
will default to the size of the window.
Series or DataFrame
shift
shift
(
periods
=
1
)
-
> bigframes
.
series
.
Series
Shift index by desired number of periods.
skew
skew
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Return unbiased skew within groups.
Normalized by N-1.
numeric_only
bool, default False
Include only float
, int
or boolean
data.
std
std
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Compute standard deviation of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
numeric_only
bool, default False
Include only float
, int
or boolean
data.
Series or DataFrame
sum
sum
(
*
args
)
-
> bigframes
.
series
.
Series
Compute sum of group values.
numeric_only
bool, default False
Include only float, int, boolean columns.
min_count
int, default 0
The required number of valid values to perform the operation. If fewer than min_count
and non-NA values are present, the result will be NA.
Series or DataFrame
var
var
(
*
args
,
**
kwargs
)
-
> bigframes
.
series
.
Series
Compute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
numeric_only
bool, default False
Include only float
, int
or boolean
data.