- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
GeminiTextGenerator
(
*
,
model_name
:
typing
.
Optional
[
typing
.
Literal
[
"gemini-1.5-pro-preview-0514"
,
"gemini-1.5-flash-preview-0514"
,
"gemini-1.5-pro-001"
,
"gemini-1.5-pro-002"
,
"gemini-1.5-flash-001"
,
"gemini-1.5-flash-002"
,
"gemini-2.0-flash-exp"
,
"gemini-2.0-flash-001"
,
"gemini-2.0-flash-lite-001"
,
]
]
=
None
,
session
:
typing
.
Optional
[
bigframes
.
session
.
Session
]
=
None
,
connection_name
:
typing
.
Optional
[
str
]
=
None
,
max_iterations
:
int
=
300
)
Gemini text generator LLM model.
Parameters
model_name
str, Default to "gemini-2.0-flash-001"
The model for natural language tasks. Accepted values are "gemini-1.5-pro-preview-0514", "gemini-1.5-flash-preview-0514", "gemini-1.5-pro-001", "gemini-1.5-pro-002", "gemini-1.5-flash-001", "gemini-1.5-flash-002", "gemini-2.0-flash-exp", "gemini-2.0-flash-lite-001", and "gemini-2.0-flash-001". If no setting is provided, "gemini-2.0-flash-001" will be used by default and a warning will be issued.
session
bigframes.Session or None
BQ session to create the model. If None, use the global default session.
connection_name
str or None
Connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>.
max_iterations
Optional[int], Default to 300
The number of steps to run when performing supervised tuning.
Methods
__repr__
__repr__
()
Print the estimator's constructor with all non-default parameter values.
fit
fit
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
y
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
)
-
> bigframes
.
ml
.
llm
.
GeminiTextGenerator
Fine tune GeminiTextGenerator model. Only support "gemini-1.5-pro-002", "gemini-1.5-flash-002", "gemini-2.0-flash-001", and "gemini-2.0-flash-lite-001"models for now.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
DataFrame of shape (n_samples, n_features). Training data.
GeminiTextGenerator
get_params
get_params
(
deep
:
bool
=
True
)
-
> typing
.
Dict
[
str
,
typing
.
Any
]
Get parameters for this estimator.
deep
bool, default True
Default True
. If True, will return the parameters for this estimator and contained subobjects that are estimators.
Dictionary
predict
predict
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
*
,
temperature
:
float
=
0.9
,
max_output_tokens
:
int
=
8192
,
top_k
:
int
=
40
,
top_p
:
float
=
1.0
,
ground_with_google_search
:
bool
=
False
,
max_retries
:
int
=
0
,
prompt
:
typing
.
Optional
[
typing
.
Iterable
[
typing
.
Union
[
str
,
bigframes
.
series
.
Series
]]
]
=
None
,
output_schema
:
typing
.
Optional
[
typing
.
Mapping
[
str
,
str
]]
=
None
)
-
> bigframes
.
dataframe
.
DataFrame
Predict the result from input DataFrame.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
or pandas.core.frame.DataFrame or pandas.core.series.Series
Input DataFrame or Series, can contain one or more columns. If multiple columns are in the DataFrame, the "prompt" column, or created by "prompt" parameter, is used for prediction. Prompts can include preamble, questions, suggestions, instructions, or examples.
temperature
float, default 0.9
The temperature is used for sampling during the response generation, which occurs when topP and topK are applied. Temperature controls the degree of randomness in token selection. Lower temperatures are good for prompts that require a more deterministic and less open-ended or creative response, while higher temperatures can lead to more diverse or creative results. A temperature of 0 is deterministic: the highest probability response is always selected. Default 0.9. Possible values [0.0, 1.0].
max_output_tokens
int, default 8192
Maximum number of tokens that can be generated in the response. A token is approximately four characters. 100 tokens correspond to roughly 60-80 words. Specify a lower value for shorter responses and a higher value for potentially longer responses. Default 8192. Possible values are in the range [1, 8192].
top_k
int, default 40
Top-K changes how the model selects tokens for output. A top-K of 1 means the next selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-K of 3 means that the next token is selected from among the three most probable tokens by using temperature. For each token selection step, the top-K tokens with the highest probabilities are sampled. Then tokens are further filtered based on top-P with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Default 40. Possible values [1, 40].
top_p
float, default 0.95
Top-P changes how the model selects tokens for output. Tokens are selected from the most (see top-K) to least probable until the sum of their probabilities equals the top-P value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-P value is 0.5, then the model will select either A or B as the next token by using temperature and excludes C as a candidate. Specify a lower value for less random responses and a higher value for more random responses. Default 1.0. Possible values [0.0, 1.0].
ground_with_google_search
bool, default False
Enables Grounding with Google Search for the Vertex AI model. When set to True, the model incorporates relevant information from Google Search results into its responses, enhancing their accuracy and factualness. This feature provides an additional column, ml_generate_text_grounding_result
, in the response output, detailing the sources used for grounding. Note: Using this feature may impact billing costs. Refer to the pricing page for details: https://cloud.google.com/vertex-ai/generative-ai/pricing#google_models
The default is False
.
max_retries
int, default 0
Max number of retries if the prediction for any rows failed. Each try needs to make progress (i.e. has successfully predicted rows) to continue the retry. Each retry will append newly succeeded rows. When the max retries are reached, the remaining rows (the ones without successful predictions) will be appended to the end of the result.
prompt
Iterable of str or bigframes.series.Series
, or None, default None
.. note:: BigFrames Blob is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms( https://cloud.google.com/terms/service-terms#1 ). Pre-GA products and features are available "as is" and might have limited support. For more information, see the launch stage descriptions ( https://cloud.google.com/products#product-launch-stages ). Construct a prompt struct column for prediction based on the input. The input must be an Iterable that can take string literals, such as "summarize", string column(s) of X, such as X["str_col"], or blob column(s) of X, such as X["blob_col"]. It creates a struct column of the items of the iterable, and use the concatenated result as the input prompt. No-op if set to None.
output_schema
Mapping[str, str] or None, default None
The schema used to generate structured output as a bigframes DataFrame. The schema is a string key-value pair of <column_name>:
score
score
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
y
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
],
task_type
:
typing
.
Literal
[
"text_generation"
,
"classification"
,
"summarization"
,
"question_answering"
]
=
"text_generation"
,
)
-
> bigframes
.
dataframe
.
DataFrame
Calculate evaluation metrics of the model. Only support "gemini-1.5-pro-002", "gemini-1.5-flash-002", "gemini-2.0-flash-lite-001", and "gemini-2.0-flash-001".
Output matches that of the BigQuery ML.EVALUATE function. See: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate#remote-model-llm for the outputs relevant to this model type.X
bigframes.dataframe.DataFrame
or bigframes.series.Series
or pandas.core.frame.DataFrame or pandas.core.series.Series
A BigQuery DataFrame as evaluation data, which contains only one column of input_text that contains the prompt text to use when evaluating the model.
y
bigframes.dataframe.DataFrame
or bigframes.series.Series
or pandas.core.frame.DataFrame or pandas.core.series.Series
A BigQuery DataFrame as evaluation labels, which contains only one column of output_text that you would expect to be returned by the model.
task_type
str
The type of the task for LLM model. Default to "text_generation". Possible values: "text_generation", "classification", "summarization", and "question_answering".
to_gbq
to_gbq
(
model_name
:
str
,
replace
:
bool
=
False
)
-
> bigframes
.
ml
.
llm
.
GeminiTextGenerator
Save the model to BigQuery.
model_name
str
The name of the model.
replace
bool, default False
Determine whether to replace if the model already exists. Default to False.
GeminiTextGenerator