This section demonstrates how to transcribe streaming audio, like the input from a microphone, to text.
Streaming speech recognition allows you to stream audio to Speech-to-Text and receive a stream speech recognition results in real time as the audio is processed. See also the audio limits for streaming speech recognition requests. Streaming speech recognition is available via gRPC only.
Perform streaming speech recognition on a local file
Below is an example of performing streaming speech recognition on a local audio
file. There is a 10 MB limit on all streaming requests sent to the API. This
limit applies to to both the initial StreamingRecognize
request
and the size of each individual message in the stream. Exceeding this limit will
throw an error.
Go
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Go API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
import
(
"context"
"flag"
"fmt"
"io"
"log"
"os"
"path/filepath"
speech
"cloud.google.com/go/speech/apiv1"
"cloud.google.com/go/speech/apiv1/speechpb"
)
func
main
()
{
flag
.
Usage
=
func
()
{
fmt
.
Fprintf
(
os
.
Stderr
,
"Usage: %s <AUDIOFILE>\n"
,
filepath
.
Base
(
os
.
Args
[
0
]))
fmt
.
Fprintf
(
os
.
Stderr
,
"<AUDIOFILE> must be a path to a local audio file. Audio file must be a 16-bit signed little-endian encoded with a sample rate of 16000.\n"
)
}
flag
.
Parse
()
if
len
(
flag
.
Args
())
!=
1
{
log
.
Fatal
(
"Please pass path to your local audio file as a command line argument"
)
}
audioFile
:=
flag
.
Arg
(
0
)
ctx
:=
context
.
Background
()
client
,
err
:=
speech
.
NewClient
(
ctx
)
if
err
!=
nil
{
log
.
Fatal
(
err
)
}
stream
,
err
:=
client
.
StreamingRecognize
(
ctx
)
if
err
!=
nil
{
log
.
Fatal
(
err
)
}
// Send the initial configuration message.
if
err
:=
stream
.
Send
(
& speechpb
.
StreamingRecognizeRequest
{
StreamingRequest
:
& speechpb
.
StreamingRecognizeRequest_StreamingConfig
{
StreamingConfig
:
& speechpb
.
StreamingRecognitionConfig
{
Config
:
& speechpb
.
RecognitionConfig
{
Encoding
:
speechpb
.
RecognitionConfig_LINEAR16
,
SampleRateHertz
:
16000
,
LanguageCode
:
"en-US"
,
},
},
},
});
err
!=
nil
{
log
.
Fatal
(
err
)
}
f
,
err
:=
os
.
Open
(
audioFile
)
if
err
!=
nil
{
log
.
Fatal
(
err
)
}
defer
f
.
Close
()
go
func
()
{
buf
:=
make
([]
byte
,
1024
)
for
{
n
,
err
:=
f
.
Read
(
buf
)
if
n
>
0
{
if
err
:=
stream
.
Send
(
& speechpb
.
StreamingRecognizeRequest
{
StreamingRequest
:
& speechpb
.
StreamingRecognizeRequest_AudioContent
{
AudioContent
:
buf
[:
n
],
},
});
err
!=
nil
{
log
.
Printf
(
"Could not send audio: %v"
,
err
)
}
}
if
err
==
io
.
EOF
{
// Nothing else to pipe, close the stream.
if
err
:=
stream
.
CloseSend
();
err
!=
nil
{
log
.
Fatalf
(
"Could not close stream: %v"
,
err
)
}
return
}
if
err
!=
nil
{
log
.
Printf
(
"Could not read from %s: %v"
,
audioFile
,
err
)
continue
}
}
}()
for
{
resp
,
err
:=
stream
.
Recv
()
if
err
==
io
.
EOF
{
break
}
if
err
!=
nil
{
log
.
Fatalf
(
"Cannot stream results: %v"
,
err
)
}
if
err
:=
resp
.
Error
;
err
!=
nil
{
log
.
Fatalf
(
"Could not recognize: %v"
,
err
)
}
for
_
,
result
:=
range
resp
.
Results
{
fmt
.
Printf
(
"Result: %+v\n"
,
result
)
}
}
}
Java
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Java API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
/**
* Performs streaming speech recognition on raw PCM audio data.
*
* @param fileName the path to a PCM audio file to transcribe.
*/
public
static
void
streamingRecognizeFile
(
String
fileName
)
throws
Exception
,
IOException
{
Path
path
=
Paths
.
get
(
fileName
);
byte
[]
data
=
Files
.
readAllBytes
(
path
);
// Instantiates a client with GOOGLE_APPLICATION_CREDENTIALS
try
(
SpeechClient
speech
=
SpeechClient
.
create
())
{
// Configure request with local raw PCM audio
RecognitionConfig
recConfig
=
RecognitionConfig
.
newBuilder
()
.
setEncoding
(
AudioEncoding
.
LINEAR16
)
.
setLanguageCode
(
"en-US"
)
.
setSampleRateHertz
(
16000
)
.
setModel
(
"default"
)
.
build
();
StreamingRecognitionConfig
config
=
StreamingRecognitionConfig
.
newBuilder
().
setConfig
(
recConfig
).
build
();
class
ResponseApiStreamingObserver<T>
implements
ApiStreamObserver<T>
{
private
final
SettableFuture<List<T>
>
future
=
SettableFuture
.
create
();
private
final
List<T>
messages
=
new
java
.
util
.
ArrayList<T>
();
@Override
public
void
onNext
(
T
message
)
{
messages
.
add
(
message
);
}
@Override
public
void
onError
(
Throwable
t
)
{
future
.
setException
(
t
);
}
@Override
public
void
onCompleted
()
{
future
.
set
(
messages
);
}
// Returns the SettableFuture object to get received messages / exceptions.
public
SettableFuture<List<T>
>
future
()
{
return
future
;
}
}
ResponseApiStreamingObserver<StreamingRecognizeResponse>
responseObserver
=
new
ResponseApiStreamingObserver
<> ();
BidiStreamingCallable<StreamingRecognizeRequest
,
StreamingRecognizeResponse
>
callable
=
speech
.
streamingRecognizeCallable
();
ApiStreamObserver<StreamingRecognizeRequest>
requestObserver
=
callable
.
bidiStreamingCall
(
responseObserver
);
// The first request must **only** contain the audio configuration:
requestObserver
.
onNext
(
StreamingRecognizeRequest
.
newBuilder
().
setStreamingConfig
(
config
).
build
());
// Subsequent requests must **only** contain the audio data.
requestObserver
.
onNext
(
StreamingRecognizeRequest
.
newBuilder
()
.
setAudioContent
(
ByteString
.
copyFrom
(
data
))
.
build
());
// Mark transmission as completed after sending the data.
requestObserver
.
onCompleted
();
List<StreamingRecognizeResponse>
responses
=
responseObserver
.
future
().
get
();
for
(
StreamingRecognizeResponse
response
:
responses
)
{
// For streaming recognize, the results list has one is_final result (if available) followed
// by a number of in-progress results (if iterim_results is true) for subsequent utterances.
// Just print the first result here.
StreamingRecognitionResult
result
=
response
.
getResultsList
().
get
(
0
);
// There can be several alternative transcripts for a given chunk of speech. Just use the
// first (most likely) one here.
SpeechRecognitionAlternative
alternative
=
result
.
getAlternativesList
().
get
(
0
);
System
.
out
.
printf
(
"Transcript : %s\n"
,
alternative
.
getTranscript
());
}
}
}
Node.js
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Node.js API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
const
fs
=
require
(
'fs'
);
// Imports the Google Cloud client library
const
speech
=
require
(
' @google-cloud/speech
'
);
// Creates a client
const
client
=
new
speech
.
SpeechClient
();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';
const
request
=
{
config
:
{
encoding
:
encoding
,
sampleRateHertz
:
sampleRateHertz
,
languageCode
:
languageCode
,
},
interimResults
:
false
,
// If you want interim results, set this to true
};
// Stream the audio to the Google Cloud Speech API
const
recognizeStream
=
client
.
streamingRecognize
(
request
)
.
on
(
'error'
,
console
.
error
)
.
on
(
'data'
,
data
=
>
{
console
.
log
(
`Transcription:
${
data
.
results
[
0
].
alternatives
[
0
].
transcript
}
`
);
});
// Stream an audio file from disk to the Speech API, e.g. "./resources/audio.raw"
fs
.
createReadStream
(
filename
).
pipe
(
recognizeStream
);
Python
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Python API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
def
transcribe_streaming
(
stream_file
:
str
)
-
> speech
.
RecognitionConfig
:
"""Streams transcription of the given audio file using Google Cloud Speech-to-Text API.
Args:
stream_file (str): Path to the local audio file to be transcribed.
Example: "resources/audio.raw"
"""
client
=
speech
.
SpeechClient
()
with
open
(
stream_file
,
"rb"
)
as
audio_file
:
audio_content
=
audio_file
.
read
()
# In practice, stream should be a generator yielding chunks of audio data.
stream
=
[
audio_content
]
requests
=
(
speech
.
StreamingRecognizeRequest
(
audio_content
=
chunk
)
for
chunk
in
stream
)
config
=
speech
.
RecognitionConfig
(
encoding
=
speech
.
RecognitionConfig
.
AudioEncoding
.
LINEAR16
,
sample_rate_hertz
=
16000
,
language_code
=
"en-US"
,
)
streaming_config
=
speech
.
StreamingRecognitionConfig
(
config
=
config
)
# streaming_recognize returns a generator.
responses
=
client
.
streaming_recognize
(
config
=
streaming_config
,
requests
=
requests
,
)
for
response
in
responses
:
# Once the transcription has settled, the first result will contain the
# is_final result. The other results will be for subsequent portions of
# the audio.
for
result
in
response
.
results
:
print
(
f
"Finished:
{
result
.
is_final
}
"
)
print
(
f
"Stability:
{
result
.
stability
}
"
)
alternatives
=
result
.
alternatives
# The alternatives are ordered from most likely to least.
for
alternative
in
alternatives
:
print
(
f
"Confidence:
{
alternative
.
confidence
}
"
)
print
(
f
"Transcript:
{
alternative
.
transcript
}
"
)
Additional languages
C#: Please follow the C# setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for .NET.
PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for PHP.
Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for Ruby.
While you can stream a local audio file to the Speech-to-Text API, it is recommended that you perform synchronous or asynchronous audio recognition for batch mode results.
Perform streaming speech recognition on an audio stream
Speech-to-Text can also perform recognition on streaming, real-time audio.
Here is an example of performing streaming speech recognition on an audio stream received from a microphone:
Go
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Go API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
import
(
"context"
"fmt"
"io"
"log"
"os"
speech
"cloud.google.com/go/speech/apiv1"
"cloud.google.com/go/speech/apiv1/speechpb"
)
func
main
()
{
ctx
:=
context
.
Background
()
client
,
err
:=
speech
.
NewClient
(
ctx
)
if
err
!=
nil
{
log
.
Fatal
(
err
)
}
stream
,
err
:=
client
.
StreamingRecognize
(
ctx
)
if
err
!=
nil
{
log
.
Fatal
(
err
)
}
// Send the initial configuration message.
if
err
:=
stream
.
Send
(
& speechpb
.
StreamingRecognizeRequest
{
StreamingRequest
:
& speechpb
.
StreamingRecognizeRequest_StreamingConfig
{
StreamingConfig
:
& speechpb
.
StreamingRecognitionConfig
{
Config
:
& speechpb
.
RecognitionConfig
{
Encoding
:
speechpb
.
RecognitionConfig_LINEAR16
,
SampleRateHertz
:
16000
,
LanguageCode
:
"en-US"
,
},
},
},
});
err
!=
nil
{
log
.
Fatal
(
err
)
}
go
func
()
{
// Pipe stdin to the API.
buf
:=
make
([]
byte
,
1024
)
for
{
n
,
err
:=
os
.
Stdin
.
Read
(
buf
)
if
n
>
0
{
if
err
:=
stream
.
Send
(
& speechpb
.
StreamingRecognizeRequest
{
StreamingRequest
:
& speechpb
.
StreamingRecognizeRequest_AudioContent
{
AudioContent
:
buf
[:
n
],
},
});
err
!=
nil
{
log
.
Printf
(
"Could not send audio: %v"
,
err
)
}
}
if
err
==
io
.
EOF
{
// Nothing else to pipe, close the stream.
if
err
:=
stream
.
CloseSend
();
err
!=
nil
{
log
.
Fatalf
(
"Could not close stream: %v"
,
err
)
}
return
}
if
err
!=
nil
{
log
.
Printf
(
"Could not read from stdin: %v"
,
err
)
continue
}
}
}()
for
{
resp
,
err
:=
stream
.
Recv
()
if
err
==
io
.
EOF
{
break
}
if
err
!=
nil
{
log
.
Fatalf
(
"Cannot stream results: %v"
,
err
)
}
if
err
:=
resp
.
Error
;
err
!=
nil
{
// Workaround while the API doesn't give a more informative error.
if
err
.
Code
==
3
||
err
.
Code
==
11
{
log
.
Print
(
"WARNING: Speech recognition request exceeded limit of 60 seconds."
)
}
log
.
Fatalf
(
"Could not recognize: %v"
,
err
)
}
for
_
,
result
:=
range
resp
.
Results
{
fmt
.
Printf
(
"Result: %+v\n"
,
result
)
}
}
}
Python
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Python API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
import
queue
import
re
import
sys
from
google.cloud
import
speech
import
pyaudio
# Audio recording parameters
RATE
=
16000
CHUNK
=
int
(
RATE
/
10
)
# 100ms
class
MicrophoneStream
:
"""Opens a recording stream as a generator yielding the audio chunks."""
def
__init__
(
self
:
object
,
rate
:
int
=
RATE
,
chunk
:
int
=
CHUNK
)
-
> None
:
"""The audio -- and generator -- is guaranteed to be on the main thread."""
self
.
_rate
=
rate
self
.
_chunk
=
chunk
# Create a thread-safe buffer of audio data
self
.
_buff
=
queue
.
Queue
()
self
.
closed
=
True
def
__enter__
(
self
:
object
)
-
> object
:
self
.
_audio_interface
=
pyaudio
.
PyAudio
()
self
.
_audio_stream
=
self
.
_audio_interface
.
open
(
format
=
pyaudio
.
paInt16
,
# The API currently only supports 1-channel (mono) audio
# https://goo.gl/z757pE
channels
=
1
,
rate
=
self
.
_rate
,
input
=
True
,
frames_per_buffer
=
self
.
_chunk
,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback
=
self
.
_fill_buffer
,
)
self
.
closed
=
False
return
self
def
__exit__
(
self
:
object
,
type
:
object
,
value
:
object
,
traceback
:
object
,
)
-
> None
:
"""Closes the stream, regardless of whether the connection was lost or not."""
self
.
_audio_stream
.
stop_stream
()
self
.
_audio_stream
.
close
()
self
.
closed
=
True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self
.
_buff
.
put
(
None
)
self
.
_audio_interface
.
terminate
()
def
_fill_buffer
(
self
:
object
,
in_data
:
object
,
frame_count
:
int
,
time_info
:
object
,
status_flags
:
object
,
)
-
> object
:
"""Continuously collect data from the audio stream, into the buffer.
Args:
in_data: The audio data as a bytes object
frame_count: The number of frames captured
time_info: The time information
status_flags: The status flags
Returns:
The audio data as a bytes object
"""
self
.
_buff
.
put
(
in_data
)
return
None
,
pyaudio
.
paContinue
def
generator
(
self
:
object
)
-
> object
:
"""Generates audio chunks from the stream of audio data in chunks.
Args:
self: The MicrophoneStream object
Returns:
A generator that outputs audio chunks.
"""
while
not
self
.
closed
:
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk
=
self
.
_buff
.
get
()
if
chunk
is
None
:
return
data
=
[
chunk
]
# Now consume whatever other data's still buffered.
while
True
:
try
:
chunk
=
self
.
_buff
.
get
(
block
=
False
)
if
chunk
is
None
:
return
data
.
append
(
chunk
)
except
queue
.
Empty
:
break
yield
b
""
.
join
(
data
)
def
listen_print_loop
(
responses
:
object
)
-
> str
:
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
Each response may contain multiple results, and each result may contain
multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
Args:
responses: List of server responses
Returns:
The transcribed text.
"""
num_chars_printed
=
0
for
response
in
responses
:
if
not
response
.
results
:
continue
# The `results` list is consecutive. For streaming, we only care about
# the first result being considered, since once it's `is_final`, it
# moves on to considering the next utterance.
result
=
response
.
results
[
0
]
if
not
result
.
alternatives
:
continue
# Display the transcription of the top alternative.
transcript
=
result
.
alternatives
[
0
]
.
transcript
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
#
# If the previous result was longer than this one, we need to print
# some extra spaces to overwrite the previous result
overwrite_chars
=
" "
*
(
num_chars_printed
-
len
(
transcript
))
if
not
result
.
is_final
:
sys
.
stdout
.
write
(
transcript
+
overwrite_chars
+
"
\r
"
)
sys
.
stdout
.
flush
()
num_chars_printed
=
len
(
transcript
)
else
:
print
(
transcript
+
overwrite_chars
)
# Exit recognition if any of the transcribed phrases could be
# one of our keywords.
if
re
.
search
(
r
"\b(exit|quit)\b"
,
transcript
,
re
.
I
):
print
(
"Exiting.."
)
break
num_chars_printed
=
0
return
transcript
def
main
()
-
> None
:
"""Transcribe speech from audio file."""
# See http://g.co/cloud/speech/docs/languages
# for a list of supported languages.
language_code
=
"en-US"
# a BCP-47 language tag
client
=
speech
.
SpeechClient
()
config
=
speech
.
RecognitionConfig
(
encoding
=
speech
.
RecognitionConfig
.
AudioEncoding
.
LINEAR16
,
sample_rate_hertz
=
RATE
,
language_code
=
language_code
,
)
streaming_config
=
speech
.
StreamingRecognitionConfig
(
config
=
config
,
interim_results
=
True
)
with
MicrophoneStream
(
RATE
,
CHUNK
)
as
stream
:
audio_generator
=
stream
.
generator
()
requests
=
(
speech
.
StreamingRecognizeRequest
(
audio_content
=
content
)
for
content
in
audio_generator
)
responses
=
client
.
streaming_recognize
(
streaming_config
,
requests
)
# Now, put the transcription responses to use.
listen_print_loop
(
responses
)
if
__name__
==
"__main__"
:
main
()
Java
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Java API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
/** Performs microphone streaming speech recognition with a duration of 1 minute. */
public
static
void
streamingMicRecognize
()
throws
Exception
{
ResponseObserver<StreamingRecognizeResponse>
responseObserver
=
null
;
try
(
SpeechClient
client
=
SpeechClient
.
create
())
{
responseObserver
=
new
ResponseObserver<StreamingRecognizeResponse>
()
{
ArrayList<StreamingRecognizeResponse>
responses
=
new
ArrayList
<> ();
public
void
onStart
(
StreamController
controller
)
{}
public
void
onResponse
(
StreamingRecognizeResponse
response
)
{
responses
.
add
(
response
);
}
public
void
onComplete
()
{
for
(
StreamingRecognizeResponse
response
:
responses
)
{
StreamingRecognitionResult
result
=
response
.
getResultsList
().
get
(
0
);
SpeechRecognitionAlternative
alternative
=
result
.
getAlternativesList
().
get
(
0
);
System
.
out
.
printf
(
"Transcript : %s\n"
,
alternative
.
getTranscript
());
}
}
public
void
onError
(
Throwable
t
)
{
System
.
out
.
println
(
t
);
}
};
ClientStream<StreamingRecognizeRequest>
clientStream
=
client
.
streamingRecognizeCallable
().
splitCall
(
responseObserver
);
RecognitionConfig
recognitionConfig
=
RecognitionConfig
.
newBuilder
()
.
setEncoding
(
RecognitionConfig
.
AudioEncoding
.
LINEAR16
)
.
setLanguageCode
(
"en-US"
)
.
setSampleRateHertz
(
16000
)
.
build
();
StreamingRecognitionConfig
streamingRecognitionConfig
=
StreamingRecognitionConfig
.
newBuilder
().
setConfig
(
recognitionConfig
).
build
();
StreamingRecognizeRequest
request
=
StreamingRecognizeRequest
.
newBuilder
()
.
setStreamingConfig
(
streamingRecognitionConfig
)
.
build
();
// The first request in a streaming call has to be a config
clientStream
.
send
(
request
);
// SampleRate:16000Hz, SampleSizeInBits: 16, Number of channels: 1, Signed: true,
// bigEndian: false
AudioFormat
audioFormat
=
new
AudioFormat
(
16000
,
16
,
1
,
true
,
false
);
DataLine
.
Info
targetInfo
=
new
Info
(
TargetDataLine
.
class
,
audioFormat
);
// Set the system information to read from the microphone audio stream
if
(
!
AudioSystem
.
isLineSupported
(
targetInfo
))
{
System
.
out
.
println
(
"Microphone not supported"
);
System
.
exit
(
0
);
}
// Target data line captures the audio stream the microphone produces.
TargetDataLine
targetDataLine
=
(
TargetDataLine
)
AudioSystem
.
getLine
(
targetInfo
);
targetDataLine
.
open
(
audioFormat
);
targetDataLine
.
start
();
System
.
out
.
println
(
"Start speaking"
);
long
startTime
=
System
.
currentTimeMillis
();
// Audio Input Stream
AudioInputStream
audio
=
new
AudioInputStream
(
targetDataLine
);
while
(
true
)
{
long
estimatedTime
=
System
.
currentTimeMillis
()
-
startTime
;
byte
[]
data
=
new
byte
[
6400
]
;
audio
.
read
(
data
);
if
(
estimatedTime
>
60000
)
{
// 60 seconds
System
.
out
.
println
(
"Stop speaking."
);
targetDataLine
.
stop
();
targetDataLine
.
close
();
break
;
}
request
=
StreamingRecognizeRequest
.
newBuilder
()
.
setAudioContent
(
ByteString
.
copyFrom
(
data
))
.
build
();
clientStream
.
send
(
request
);
}
}
catch
(
Exception
e
)
{
System
.
out
.
println
(
e
);
}
responseObserver
.
onComplete
();
}
Node.js
This samples requires you to install SoX
and it must be available in your $PATH
.
- For Mac OS:
brew install sox
. - For most Linux distributions:
sudo apt-get install sox libsox-fmt-all
. - For Windows: Download the binaries .
For more on installing and creating a Speech-to-Text client, refer to Speech-to-Text Client Libraries .
const
recorder
=
require
(
'node-record-lpcm16'
);
// Imports the Google Cloud client library
const
speech
=
require
(
' @google-cloud/speech
'
);
// Creates a client
const
client
=
new
speech
.
SpeechClient
();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';
const
request
=
{
config
:
{
encoding
:
encoding
,
sampleRateHertz
:
sampleRateHertz
,
languageCode
:
languageCode
,
},
interimResults
:
false
,
// If you want interim results, set this to true
};
// Create a recognize stream
const
recognizeStream
=
client
.
streamingRecognize
(
request
)
.
on
(
'error'
,
console
.
error
)
.
on
(
'data'
,
data
=
>
process
.
stdout
.
write
(
data
.
results
[
0
]
&&
data
.
results
[
0
].
alternatives
[
0
]
?
`Transcription:
${
data
.
results
[
0
].
alternatives
[
0
].
transcript
}
\n`
:
'\n\nReached transcription time limit, press Ctrl+C\n'
)
);
// Start recording and send the microphone input to the Speech API.
// Ensure SoX is installed, see https://www.npmjs.com/package/node-record-lpcm16#dependencies
recorder
.
record
({
sampleRateHertz
:
sampleRateHertz
,
threshold
:
0
,
// Other options, see https://www.npmjs.com/package/node-record-lpcm16#options
verbose
:
false
,
recordProgram
:
'rec'
,
// Try also "arecord" or "sox"
silence
:
'10.0'
,
})
.
stream
()
.
on
(
'error'
,
console
.
error
)
.
pipe
(
recognizeStream
);
console
.
log
(
'Listening, press Ctrl+C to stop.'
);
Additional languages
C#: Please follow the C# setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for .NET.
PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for PHP.
Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Speech-to-Text reference documentation for Ruby.
Perform endless streaming speech recognition
Here is an example of performing streaming speech recognition on an endless audio stream received from a microphone:
Python
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Python API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
import
queue
import
re
import
sys
import
time
from
google.cloud
import
speech
import
pyaudio
# Audio recording parameters
STREAMING_LIMIT
=
240000
# 4 minutes
SAMPLE_RATE
=
16000
CHUNK_SIZE
=
int
(
SAMPLE_RATE
/
10
)
# 100ms
RED
=
"
\033
[0;31m"
GREEN
=
"
\033
[0;32m"
YELLOW
=
"
\033
[0;33m"
def
get_current_time
()
-
> int
:
"""Return Current Time in MS.
Returns:
int: Current Time in MS.
"""
return
int
(
round
(
time
.
time
()
*
1000
))
class
ResumableMicrophoneStream
:
"""Opens a recording stream as a generator yielding the audio chunks."""
def
__init__
(
self
:
object
,
rate
:
int
,
chunk_size
:
int
,
)
-
> None
:
"""Creates a resumable microphone stream.
Args:
self: The class instance.
rate: The audio file's sampling rate.
chunk_size: The audio file's chunk size.
returns: None
"""
self
.
_rate
=
rate
self
.
chunk_size
=
chunk_size
self
.
_num_channels
=
1
self
.
_buff
=
queue
.
Queue
()
self
.
closed
=
True
self
.
start_time
=
get_current_time
()
self
.
restart_counter
=
0
self
.
audio_input
=
[]
self
.
last_audio_input
=
[]
self
.
result_end_time
=
0
self
.
is_final_end_time
=
0
self
.
final_request_end_time
=
0
self
.
bridging_offset
=
0
self
.
last_transcript_was_final
=
False
self
.
new_stream
=
True
self
.
_audio_interface
=
pyaudio
.
PyAudio
()
self
.
_audio_stream
=
self
.
_audio_interface
.
open
(
format
=
pyaudio
.
paInt16
,
channels
=
self
.
_num_channels
,
rate
=
self
.
_rate
,
input
=
True
,
frames_per_buffer
=
self
.
chunk_size
,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback
=
self
.
_fill_buffer
,
)
def
__enter__
(
self
:
object
)
-
> object
:
"""Opens the stream.
Args:
self: The class instance.
returns: None
"""
self
.
closed
=
False
return
self
def
__exit__
(
self
:
object
,
type
:
object
,
value
:
object
,
traceback
:
object
,
)
-
> object
:
"""Closes the stream and releases resources.
Args:
self: The class instance.
type: The exception type.
value: The exception value.
traceback: The exception traceback.
returns: None
"""
self
.
_audio_stream
.
stop_stream
()
self
.
_audio_stream
.
close
()
self
.
closed
=
True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self
.
_buff
.
put
(
None
)
self
.
_audio_interface
.
terminate
()
def
_fill_buffer
(
self
:
object
,
in_data
:
object
,
*
args
:
object
,
**
kwargs
:
object
,
)
-
> object
:
"""Continuously collect data from the audio stream, into the buffer.
Args:
self: The class instance.
in_data: The audio data as a bytes object.
args: Additional arguments.
kwargs: Additional arguments.
returns: None
"""
self
.
_buff
.
put
(
in_data
)
return
None
,
pyaudio
.
paContinue
def
generator
(
self
:
object
)
-
> object
:
"""Stream Audio from microphone to API and to local buffer
Args:
self: The class instance.
returns:
The data from the audio stream.
"""
while
not
self
.
closed
:
data
=
[]
if
self
.
new_stream
and
self
.
last_audio_input
:
chunk_time
=
STREAMING_LIMIT
/
len
(
self
.
last_audio_input
)
if
chunk_time
!=
0
:
if
self
.
bridging_offset
< 0
:
self
.
bridging_offset
=
0
if
self
.
bridging_offset
> self
.
final_request_end_time
:
self
.
bridging_offset
=
self
.
final_request_end_time
chunks_from_ms
=
round
(
(
self
.
final_request_end_time
-
self
.
bridging_offset
)
/
chunk_time
)
self
.
bridging_offset
=
round
(
(
len
(
self
.
last_audio_input
)
-
chunks_from_ms
)
*
chunk_time
)
for
i
in
range
(
chunks_from_ms
,
len
(
self
.
last_audio_input
)):
data
.
append
(
self
.
last_audio_input
[
i
])
self
.
new_stream
=
False
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk
=
self
.
_buff
.
get
()
self
.
audio_input
.
append
(
chunk
)
if
chunk
is
None
:
return
data
.
append
(
chunk
)
# Now consume whatever other data's still buffered.
while
True
:
try
:
chunk
=
self
.
_buff
.
get
(
block
=
False
)
if
chunk
is
None
:
return
data
.
append
(
chunk
)
self
.
audio_input
.
append
(
chunk
)
except
queue
.
Empty
:
break
yield
b
""
.
join
(
data
)
def
listen_print_loop
(
responses
:
object
,
stream
:
object
)
-
> None
:
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
Each response may contain multiple results, and each result may contain
multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
Arg:
responses: The responses returned from the API.
stream: The audio stream to be processed.
"""
for
response
in
responses
:
if
get_current_time
()
-
stream
.
start_time
> STREAMING_LIMIT
:
stream
.
start_time
=
get_current_time
()
break
if
not
response
.
results
:
continue
result
=
response
.
results
[
0
]
if
not
result
.
alternatives
:
continue
transcript
=
result
.
alternatives
[
0
]
.
transcript
result_seconds
=
0
result_micros
=
0
if
result
.
result_end_time
.
seconds
:
result_seconds
=
result
.
result_end_time
.
seconds
if
result
.
result_end_time
.
microseconds
:
result_micros
=
result
.
result_end_time
.
microseconds
stream
.
result_end_time
=
int
((
result_seconds
*
1000
)
+
(
result_micros
/
1000
))
corrected_time
=
(
stream
.
result_end_time
-
stream
.
bridging_offset
+
(
STREAMING_LIMIT
*
stream
.
restart_counter
)
)
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
if
result
.
is_final
:
sys
.
stdout
.
write
(
GREEN
)
sys
.
stdout
.
write
(
"
\033
[K"
)
sys
.
stdout
.
write
(
str
(
corrected_time
)
+
": "
+
transcript
+
"
\n
"
)
stream
.
is_final_end_time
=
stream
.
result_end_time
stream
.
last_transcript_was_final
=
True
# Exit recognition if any of the transcribed phrases could be
# one of our keywords.
if
re
.
search
(
r
"\b(exit|quit)\b"
,
transcript
,
re
.
I
):
sys
.
stdout
.
write
(
YELLOW
)
sys
.
stdout
.
write
(
"Exiting...
\n
"
)
stream
.
closed
=
True
break
else
:
sys
.
stdout
.
write
(
RED
)
sys
.
stdout
.
write
(
"
\033
[K"
)
sys
.
stdout
.
write
(
str
(
corrected_time
)
+
": "
+
transcript
+
"
\r
"
)
stream
.
last_transcript_was_final
=
False
def
main
()
-
> None
:
"""start bidirectional streaming from microphone input to speech API"""
client
=
speech
.
SpeechClient
()
config
=
speech
.
RecognitionConfig
(
encoding
=
speech
.
RecognitionConfig
.
AudioEncoding
.
LINEAR16
,
sample_rate_hertz
=
SAMPLE_RATE
,
language_code
=
"en-US"
,
max_alternatives
=
1
,
)
streaming_config
=
speech
.
StreamingRecognitionConfig
(
config
=
config
,
interim_results
=
True
)
mic_manager
=
ResumableMicrophoneStream
(
SAMPLE_RATE
,
CHUNK_SIZE
)
print
(
mic_manager
.
chunk_size
)
sys
.
stdout
.
write
(
YELLOW
)
sys
.
stdout
.
write
(
'
\n
Listening, say "Quit" or "Exit" to stop.
\n\n
'
)
sys
.
stdout
.
write
(
"End (ms) Transcript Results/Status
\n
"
)
sys
.
stdout
.
write
(
"=====================================================
\n
"
)
with
mic_manager
as
stream
:
while
not
stream
.
closed
:
sys
.
stdout
.
write
(
YELLOW
)
sys
.
stdout
.
write
(
"
\n
"
+
str
(
STREAMING_LIMIT
*
stream
.
restart_counter
)
+
": NEW REQUEST
\n
"
)
stream
.
audio_input
=
[]
audio_generator
=
stream
.
generator
()
requests
=
(
speech
.
StreamingRecognizeRequest
(
audio_content
=
content
)
for
content
in
audio_generator
)
responses
=
client
.
streaming_recognize
(
streaming_config
,
requests
)
# Now, put the transcription responses to use.
listen_print_loop
(
responses
,
stream
)
if
stream
.
result_end_time
> 0
:
stream
.
final_request_end_time
=
stream
.
is_final_end_time
stream
.
result_end_time
=
0
stream
.
last_audio_input
=
[]
stream
.
last_audio_input
=
stream
.
audio_input
stream
.
audio_input
=
[]
stream
.
restart_counter
=
stream
.
restart_counter
+
1
if
not
stream
.
last_transcript_was_final
:
sys
.
stdout
.
write
(
"
\n
"
)
stream
.
new_stream
=
True
if
__name__
==
"__main__"
:
main
()
Java
To learn how to install and use the client library for Speech-to-Text, see Speech-to-Text client libraries . For more information, see the Speech-to-Text Java API reference documentation .
To authenticate to Speech-to-Text, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .
import
com.google.api.gax.rpc. ClientStream
;
import
com.google.api.gax.rpc. ResponseObserver
;
import
com.google.api.gax.rpc. StreamController
;
import
com.google.cloud.speech.v1p1beta1.RecognitionConfig
;
import
com.google.cloud.speech.v1p1beta1.SpeechClient
;
import
com.google.cloud.speech.v1p1beta1.SpeechRecognitionAlternative
;
import
com.google.cloud.speech.v1p1beta1.StreamingRecognitionConfig
;
import
com.google.cloud.speech.v1p1beta1.StreamingRecognitionResult
;
import
com.google.cloud.speech.v1p1beta1.StreamingRecognizeRequest
;
import
com.google.cloud.speech.v1p1beta1.StreamingRecognizeResponse
;
import
com.google.protobuf. ByteString
;
import
com.google.protobuf. Duration
;
import
java.text.DecimalFormat
;
import
java.util.ArrayList
;
import
java.util.concurrent.BlockingQueue
;
import
java.util.concurrent.LinkedBlockingQueue
;
import
java.util.concurrent.TimeUnit
;
import
javax.sound.sampled.AudioFormat
;
import
javax.sound.sampled.AudioSystem
;
import
javax.sound.sampled.DataLine
;
import
javax.sound.sampled.DataLine.Info
;
import
javax.sound.sampled.TargetDataLine
;
public
class
InfiniteStreamRecognize
{
private
static
final
int
STREAMING_LIMIT
=
290000
;
// ~5 minutes
public
static
final
String
RED
=
"\033[0;31m"
;
public
static
final
String
GREEN
=
"\033[0;32m"
;
public
static
final
String
YELLOW
=
"\033[0;33m"
;
// Creating shared object
private
static
volatile
BlockingQueue<byte
[]
>
sharedQueue
=
new
LinkedBlockingQueue<byte
[]
> ();
private
static
TargetDataLine
targetDataLine
;
private
static
int
BYTES_PER_BUFFER
=
6400
;
// buffer size in bytes
private
static
int
restartCounter
=
0
;
private
static
ArrayList<ByteString>
audioInput
=
new
ArrayList<ByteString>
();
private
static
ArrayList<ByteString>
lastAudioInput
=
new
ArrayList<ByteString>
();
private
static
int
resultEndTimeInMS
=
0
;
private
static
int
isFinalEndTime
=
0
;
private
static
int
finalRequestEndTime
=
0
;
private
static
boolean
newStream
=
true
;
private
static
double
bridgingOffset
=
0
;
private
static
boolean
lastTranscriptWasFinal
=
false
;
private
static
StreamController
referenceToStreamController
;
private
static
ByteString
tempByteString
;
public
static
void
main
(
String
...
args
)
{
InfiniteStreamRecognizeOptions
options
=
InfiniteStreamRecognizeOptions
.
fromFlags
(
args
);
if
(
options
==
null
)
{
// Could not parse.
System
.
out
.
println
(
"Failed to parse options."
);
System
.
exit
(
1
);
}
try
{
infiniteStreamingRecognize
(
options
.
langCode
);
}
catch
(
Exception
e
)
{
System
.
out
.
println
(
"Exception caught: "
+
e
);
}
}
public
static
String
convertMillisToDate
(
double
milliSeconds
)
{
long
millis
=
(
long
)
milliSeconds
;
DecimalFormat
format
=
new
DecimalFormat
();
format
.
setMinimumIntegerDigits
(
2
);
return
String
.
format
(
"%s:%s /"
,
format
.
format
(
TimeUnit
.
MILLISECONDS
.
toMinutes
(
millis
)),
format
.
format
(
TimeUnit
.
MILLISECONDS
.
toSeconds
(
millis
)
-
TimeUnit
.
MINUTES
.
toSeconds
(
TimeUnit
.
MILLISECONDS
.
toMinutes
(
millis
))));
}
/** Performs infinite streaming speech recognition */
public
static
void
infiniteStreamingRecognize
(
String
languageCode
)
throws
Exception
{
// Microphone Input buffering
class
MicBuffer
implements
Runnable
{
@Override
public
void
run
()
{
System
.
out
.
println
(
YELLOW
);
System
.
out
.
println
(
"Start speaking...Press Ctrl-C to stop"
);
targetDataLine
.
start
();
byte
[]
data
=
new
byte
[
BYTES_PER_BUFFER
]
;
while
(
targetDataLine
.
isOpen
())
{
try
{
int
numBytesRead
=
targetDataLine
.
read
(
data
,
0
,
data
.
length
);
if
((
numBytesRead
< =
0
)
&&
(
targetDataLine
.
isOpen
()))
{
continue
;
}
sharedQueue
.
put
(
data
.
clone
());
}
catch
(
InterruptedException
e
)
{
System
.
out
.
println
(
"Microphone input buffering interrupted : "
+
e
.
getMessage
());
}
}
}
}
// Creating microphone input buffer thread
MicBuffer
micrunnable
=
new
MicBuffer
();
Thread
micThread
=
new
Thread
(
micrunnable
);
ResponseObserver<StreamingRecognizeResponse>
responseObserver
=
null
;
try
(
SpeechClient
client
=
SpeechClient
.
create
())
{
ClientStream<StreamingRecognizeRequest>
clientStream
;
responseObserver
=
new
ResponseObserver<StreamingRecognizeResponse>
()
{
ArrayList<StreamingRecognizeResponse>
responses
=
new
ArrayList
<> ();
public
void
onStart
(
StreamController
controller
)
{
referenceToStreamController
=
controller
;
}
public
void
onResponse
(
StreamingRecognizeResponse
response
)
{
responses
.
add
(
response
);
StreamingRecognitionResult
result
=
response
.
getResultsList
().
get
(
0
);
Duration
resultEndTime
=
result
.
getResultEndTime
();
resultEndTimeInMS
=
(
int
)
((
resultEndTime
.
getSeconds
()
*
1000
)
+
(
resultEndTime
.
getNanos
()
/
1000000
));
double
correctedTime
=
resultEndTimeInMS
-
bridgingOffset
+
(
STREAMING_LIMIT
*
restartCounter
);
SpeechRecognitionAlternative
alternative
=
result
.
getAlternativesList
().
get
(
0
);
if
(
result
.
getIsFinal
())
{
System
.
out
.
print
(
GREEN
);
System
.
out
.
print
(
"\033[2K\r"
);
System
.
out
.
printf
(
"%s: %s [confidence: %.2f]\n"
,
convertMillisToDate
(
correctedTime
),
alternative
.
getTranscript
(),
alternative
.
getConfidence
());
isFinalEndTime
=
resultEndTimeInMS
;
lastTranscriptWasFinal
=
true
;
}
else
{
System
.
out
.
print
(
RED
);
System
.
out
.
print
(
"\033[2K\r"
);
System
.
out
.
printf
(
"%s: %s"
,
convertMillisToDate
(
correctedTime
),
alternative
.
getTranscript
());
lastTranscriptWasFinal
=
false
;
}
}
public
void
onComplete
()
{}
public
void
onError
(
Throwable
t
)
{}
};
clientStream
=
client
.
streamingRecognizeCallable
().
splitCall
(
responseObserver
);
RecognitionConfig
recognitionConfig
=
RecognitionConfig
.
newBuilder
()
.
setEncoding
(
RecognitionConfig
.
AudioEncoding
.
LINEAR16
)
.
setLanguageCode
(
languageCode
)
.
setSampleRateHertz
(
16000
)
.
build
();
StreamingRecognitionConfig
streamingRecognitionConfig
=
StreamingRecognitionConfig
.
newBuilder
()
.
setConfig
(
recognitionConfig
)
.
setInterimResults
(
true
)
.
build
();
StreamingRecognizeRequest
request
=
StreamingRecognizeRequest
.
newBuilder
()
.
setStreamingConfig
(
streamingRecognitionConfig
)
.
build
();
// The first request in a streaming call has to be a config
clientStream
.
send
(
request
);
try
{
// SampleRate:16000Hz, SampleSizeInBits: 16, Number of channels: 1, Signed: true,
// bigEndian: false
AudioFormat
audioFormat
=
new
AudioFormat
(
16000
,
16
,
1
,
true
,
false
);
DataLine
.
Info
targetInfo
=
new
Info
(
TargetDataLine
.
class
,
audioFormat
);
// Set the system information to read from the microphone audio
// stream
if
(
!
AudioSystem
.
isLineSupported
(
targetInfo
))
{
System
.
out
.
println
(
"Microphone not supported"
);
System
.
exit
(
0
);
}
// Target data line captures the audio stream the microphone produces.
targetDataLine
=
(
TargetDataLine
)
AudioSystem
.
getLine
(
targetInfo
);
targetDataLine
.
open
(
audioFormat
);
micThread
.
start
();
long
startTime
=
System
.
currentTimeMillis
();
while
(
true
)
{
long
estimatedTime
=
System
.
currentTimeMillis
()
-
startTime
;
if
(
estimatedTime
> =
STREAMING_LIMIT
)
{
clientStream
.
closeSend
();
referenceToStreamController
.
cancel
();
// remove Observer
if
(
resultEndTimeInMS
>
0
)
{
finalRequestEndTime
=
isFinalEndTime
;
}
resultEndTimeInMS
=
0
;
lastAudioInput
=
null
;
lastAudioInput
=
audioInput
;
audioInput
=
new
ArrayList<ByteString>
();
restartCounter
++
;
if
(
!
lastTranscriptWasFinal
)
{
System
.
out
.
print
(
'\n'
);
}
newStream
=
true
;
clientStream
=
client
.
streamingRecognizeCallable
().
splitCall
(
responseObserver
);
request
=
StreamingRecognizeRequest
.
newBuilder
()
.
setStreamingConfig
(
streamingRecognitionConfig
)
.
build
();
System
.
out
.
println
(
YELLOW
);
System
.
out
.
printf
(
"%d: RESTARTING REQUEST\n"
,
restartCounter
*
STREAMING_LIMIT
);
startTime
=
System
.
currentTimeMillis
();
}
else
{
if
((
newStream
)
&&
(
lastAudioInput
.
size
()
>
0
))
{
// if this is the first audio from a new request
// calculate amount of unfinalized audio from last request
// resend the audio to the speech client before incoming audio
double
chunkTime
=
STREAMING_LIMIT
/
lastAudioInput
.
size
();
// ms length of each chunk in previous request audio arrayList
if
(
chunkTime
!=
0
)
{
if
(
bridgingOffset
<
0
)
{
// bridging Offset accounts for time of resent audio
// calculated from last request
bridgingOffset
=
0
;
}
if
(
bridgingOffset
>
finalRequestEndTime
)
{
bridgingOffset
=
finalRequestEndTime
;
}
int
chunksFromMs
=
(
int
)
Math
.
floor
((
finalRequestEndTime
-
bridgingOffset
)
/
chunkTime
);
// chunks from MS is number of chunks to resend
bridgingOffset
=
(
int
)
Math
.
floor
((
lastAudioInput
.
size
()
-
chunksFromMs
)
*
chunkTime
);
// set bridging offset for next request
for
(
int
i
=
chunksFromMs
;
i
<
lastAudioInput
.
size
();
i
++
)
{
request
=
StreamingRecognizeRequest
.
newBuilder
()
.
setAudioContent
(
lastAudioInput
.
get
(
i
))
.
build
();
clientStream
.
send
(
request
);
}
}
newStream
=
false
;
}
tempByteString
=
ByteString
.
copyFrom
(
sharedQueue
.
take
());
request
=
StreamingRecognizeRequest
.
newBuilder
().
setAudioContent
(
tempByteString
).
build
();
audioInput
.
add
(
tempByteString
);
}
clientStream
.
send
(
request
);
}
}
catch
(
Exception
e
)
{
System
.
out
.
println
(
e
);
}
}
}
}
Node.js
This sample requires you to install SoX
, and it must be available in your $PATH
.
- For Mac OS:
brew install sox
. - For most Linux distributions:
sudo apt-get install sox libsox-fmt-all
. - For Windows: Download the binaries .
For more on installing and creating a Speech-to-Text client, refer to Speech-to-Text Client Libraries .
// const encoding = 'LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'en-US';
// const streamingLimit = 10000; // ms - set to low number for demo purposes
const
chalk
=
require
(
'chalk'
);
const
{
Writable
}
=
require
(
'stream'
);
const
recorder
=
require
(
'node-record-lpcm16'
);
// Imports the Google Cloud client library
// Currently, only v1p1beta1 contains result-end-time
const
speech
=
require
(
' @google-cloud/speech
'
).
v1p1beta1
;
const
client
=
new
speech
.
SpeechClient
();
const
config
=
{
encoding
:
encoding
,
sampleRateHertz
:
sampleRateHertz
,
languageCode
:
languageCode
,
};
const
request
=
{
config
,
interimResults
:
true
,
};
let
recognizeStream
=
null
;
let
restartCounter
=
0
;
let
audioInput
=
[];
let
lastAudioInput
=
[];
let
resultEndTime
=
0
;
let
isFinalEndTime
=
0
;
let
finalRequestEndTime
=
0
;
let
newStream
=
true
;
let
bridgingOffset
=
0
;
let
lastTranscriptWasFinal
=
false
;
function
startStream
()
{
// Clear current audioInput
audioInput
=
[];
// Initiate (Reinitiate) a recognize stream
recognizeStream
=
client
.
streamingRecognize
(
request
)
.
on
(
'error'
,
err
=
>
{
if
(
err
.
code
===
11
)
{
// restartStream();
}
else
{
console
.
error
(
'API request error '
+
err
);
}
})
.
on
(
'data'
,
speechCallback
);
// Restart stream when streamingLimit expires
setTimeout
(
restartStream
,
streamingLimit
);
}
const
speechCallback
=
stream
=
>
{
// Convert API result end time from seconds + nanoseconds to milliseconds
resultEndTime
=
stream
.
results
[
0
].
resultEndTime
.
seconds
*
1000
+
Math
.
round
(
stream
.
results
[
0
].
resultEndTime
.
nanos
/
1000000
);
// Calculate correct time based on offset from audio sent twice
const
correctedTime
=
resultEndTime
-
bridgingOffset
+
streamingLimit
*
restartCounter
;
process
.
stdout
.
clearLine
();
process
.
stdout
.
cursorTo
(
0
);
let
stdoutText
=
''
;
if
(
stream
.
results
[
0
]
&&
stream
.
results
[
0
].
alternatives
[
0
])
{
stdoutText
=
correctedTime
+
': '
+
stream
.
results
[
0
].
alternatives
[
0
].
transcript
;
}
if
(
stream
.
results
[
0
].
isFinal
)
{
process
.
stdout
.
write
(
chalk
.
green
(
`
${
stdoutText
}
\n`
));
isFinalEndTime
=
resultEndTime
;
lastTranscriptWasFinal
=
true
;
}
else
{
// Make sure transcript does not exceed console character length
if
(
stdoutText
.
length
>
process
.
stdout
.
columns
)
{
stdoutText
=
stdoutText
.
substring
(
0
,
process
.
stdout
.
columns
-
4
)
+
'...'
;
}
process
.
stdout
.
write
(
chalk
.
red
(
`
${
stdoutText
}
`
));
lastTranscriptWasFinal
=
false
;
}
};
const
audioInputStreamTransform
=
new
Writable
({
write
(
chunk
,
encoding
,
next
)
{
if
(
newStream
&&
lastAudioInput
.
length
!==
0
)
{
// Approximate math to calculate time of chunks
const
chunkTime
=
streamingLimit
/
lastAudioInput
.
length
;
if
(
chunkTime
!==
0
)
{
if
(
bridgingOffset
<
0
)
{
bridgingOffset
=
0
;
}
if
(
bridgingOffset
>
finalRequestEndTime
)
{
bridgingOffset
=
finalRequestEndTime
;
}
const
chunksFromMS
=
Math
.
floor
(
(
finalRequestEndTime
-
bridgingOffset
)
/
chunkTime
);
bridgingOffset
=
Math
.
floor
(
(
lastAudioInput
.
length
-
chunksFromMS
)
*
chunkTime
);
for
(
let
i
=
chunksFromMS
;
i
<
lastAudioInput
.
length
;
i
++
)
{
recognizeStream
.
write
(
lastAudioInput
[
i
]);
}
}
newStream
=
false
;
}
audioInput
.
push
(
chunk
);
if
(
recognizeStream
)
{
recognizeStream
.
write
(
chunk
);
}
next
();
},
final
()
{
if
(
recognizeStream
)
{
recognizeStream
.
end
();
}
},
});
function
restartStream
()
{
if
(
recognizeStream
)
{
recognizeStream
.
end
();
recognizeStream
.
removeListener
(
'data'
,
speechCallback
);
recognizeStream
=
null
;
}
if
(
resultEndTime
>
0
)
{
finalRequestEndTime
=
isFinalEndTime
;
}
resultEndTime
=
0
;
lastAudioInput
=
[];
lastAudioInput
=
audioInput
;
restartCounter
++
;
if
(
!
lastTranscriptWasFinal
)
{
process
.
stdout
.
write
(
'\n'
);
}
process
.
stdout
.
write
(
chalk
.
yellow
(
`
${
streamingLimit
*
restartCounter
}
: RESTARTING REQUEST\n`
)
);
newStream
=
true
;
startStream
();
}
// Start recording and send the microphone input to the Speech API
recorder
.
record
({
sampleRateHertz
:
sampleRateHertz
,
threshold
:
0
,
// Silence threshold
silence
:
1000
,
keepSilence
:
true
,
recordProgram
:
'rec'
,
// Try also "arecord" or "sox"
})
.
stream
()
.
on
(
'error'
,
err
=
>
{
console
.
error
(
'Audio recording error '
+
err
);
})
.
pipe
(
audioInputStreamTransform
);
console
.
log
(
''
);
console
.
log
(
'Listening, press Ctrl+C to stop.'
);
console
.
log
(
''
);
console
.
log
(
'End (ms) Transcript Results/Status'
);
console
.
log
(
'========================================================='
);
startStream
();
What's next
- Learn how to measure and improve accuracy
Try it for yourself
If you're new to Google Cloud, create an account to evaluate how Speech-to-Text performs in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
Try Speech-to-Text free