The description a notebook execution workload.
| JSON representation | 
|---|
| { "scaleTier" : enum ( | 
scaleTier
 (deprecated) 
 
 enum (  
 ScaleTier 
 
)
Required. Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
masterType 
 string 
Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when scaleTier 
is set to CUSTOM 
.
You can use certain Compute Engine machine types directly in this field. The following types are supported:
-  n1-standard-4
-  n1-standard-8
-  n1-standard-16
-  n1-standard-32
-  n1-standard-64
-  n1-standard-96
-  n1-highmem-2
-  n1-highmem-4
-  n1-highmem-8
-  n1-highmem-16
-  n1-highmem-32
-  n1-highmem-64
-  n1-highmem-96
-  n1-highcpu-16
-  n1-highcpu-32
-  n1-highcpu-64
-  n1-highcpu-96
Alternatively, you can use the following legacy machine types:
-  standard
-  large_model
-  complex_model_s
-  complex_model_m
-  complex_model_l
-  standard_gpu
-  complex_model_m_gpu
-  complex_model_l_gpu
-  standard_p100
-  complex_model_m_p100
-  standard_v100
-  large_model_v100
-  complex_model_m_v100
-  complex_model_l_v100
Finally, if you want to use a TPU for training, specify cloud_tpu 
in this field. Learn more about the special configuration options for training with TPU 
.
acceleratorConfig 
 object (  
 SchedulerAcceleratorConfig 
 
)
Configuration (count and accelerator type) for hardware running notebook execution.
labels 
 map (key: string, value: string) 
Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.
An object containing a list of "key": value 
pairs. Example: { "name": "wrench", "mass": "1.3kg", "count": "3" } 
.
inputNotebookFile 
 string 
Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{bucket_name}/{folder}/{notebook_file_name} 
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb 
containerImageUri 
 string 
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
outputNotebookFolder 
 string 
Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{bucket_name}/{folder} 
Ex: gs://notebook_user/scheduled_notebooks 
paramsYamlFile 
 string 
Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html 
on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml 
parameters 
 string 
Parameters used within the 'inputNotebookFile' notebook.
serviceAccount 
 string 
The email address of a service account to use when running the execution. You must have the iam.serviceAccounts.actAs 
permission for the specified service account.
jobType 
 enum (  
 JobType 
 
)
The type of Job to be used on this execution.
kernelSpec 
 string 
Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.
tensorboard 
 string 
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} 
job_parameters 
. Parameters for an execution type. NOTE: There are currently no extra parameters for VertexAI jobs. job_parameters 
can be only one of the following:dataprocParameters 
 object (  
 DataprocParameters 
 
)
Parameters used in Dataproc JobType executions.
vertexAiParameters 
 object (  
 VertexAIParameters 
 
)
Parameters used in Vertex AI JobType executions.
ScaleTier
Required. Specifies the machine types, the number of replicas for workers and parameter servers.
SCALE_TIER_UNSPECIFIED 
BASIC 
STANDARD_1 
PREMIUM_1 
BASIC_GPU 
BASIC_TPU 
CUSTOM 
The CUSTOM tier is not a set tier, but rather enables you to use your own cluster specification. When you use this tier, set values to configure your processing cluster according to these guidelines:
- You must 
set ExecutionTemplate.masterTypeto specify the type of machine to use for your master node. This is the only required setting.
SchedulerAcceleratorConfig
Definition of a hardware accelerator. Note that not all combinations of type 
and coreCount 
are valid. See GPUs on Compute Engine 
to find a valid combination. TPUs are not supported.
| JSON representation | 
|---|
|  { 
 "type" 
 : 
 enum (  | 
| Fields | |
|---|---|
| type |   Type of this accelerator. | 
| coreCount |   Count of cores of this accelerator. | 
SchedulerAcceleratorType
Hardware accelerator types for AI Platform Training jobs.
| Enums | |
|---|---|
| SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED | Unspecified accelerator type. Default to no GPU. | 
| NVIDIA_TESLA_K80 | Nvidia Tesla K80 GPU. | 
| NVIDIA_TESLA_P100 | Nvidia Tesla P100 GPU. | 
| NVIDIA_TESLA_V100 | Nvidia Tesla V100 GPU. | 
| NVIDIA_TESLA_P4 | Nvidia Tesla P4 GPU. | 
| NVIDIA_TESLA_T4 | Nvidia Tesla T4 GPU. | 
| NVIDIA_TESLA_A100 | Nvidia Tesla A100 GPU. | 
| TPU_V2 | TPU v2. | 
| TPU_V3 | TPU v3. | 
JobType
The backend used for this execution.
| Enums | |
|---|---|
| JOB_TYPE_UNSPECIFIED | No type specified. | 
| VERTEX_AI | Custom Job in aiplatform.googleapis.com. Default value for an execution. | 
| DATAPROC | Run execution on a cluster with Dataproc as a job. https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs | 
DataprocParameters
Parameters used in Dataproc JobType executions.
| JSON representation | 
|---|
| { "cluster" : string } | 
| Fields | |
|---|---|
| cluster |   URI for cluster used to run Dataproc execution. Format:  | 
VertexAIParameters
Parameters used in Vertex AI JobType executions.
| JSON representation | 
|---|
| { "network" : string , "env" : { string : string , ... } } | 
| Fields | |
|---|---|
| network |   The full name of the Compute Engine network 
to which the Job should be peered. For example,  Private services access must already be configured for the network. If left unspecified, the job is not peered with any network. | 
| env |   Environment variables. At most 100 environment variables can be specified and unique. Example:  An object containing a list of  | 

